Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
World J Microbiol Biotechnol ; 40(2): 50, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38145436

ABSTRACT

Pollution caused by spent engine oil has become a major global ecological concern as it constitutes a big threat to plants, animals, microorganisms and the soil ecosystem. This study was undertaken to examine the remediation of spent engine oil-contaminated soil through biostimulation and bioaugmentation with sodium dodecyl sulphate and indigenous hydrocarbonoclastic bacterial isolates. Twelve mesocosms were organized into four groups designated G1, G2, G3 and G4 and each filled with 2.5 kg of soil samples. Each group was composed of three mesocosms to produce a triplicate setup. G1 contained pristine soil which served as a positive control. G2 contained a total petroleum hydrocarbon (TPH) of 913.333 mg/kg in the untreated oil-polluted soil which served as a negative control. G3 contained a TPH of 913.333 mg/kg in the polluted soil inoculated with indigenous hydrocarbonoclastic bacterial isolates. G4 contained a TPH of 913.333 mg/kg in the polluted soil mixed with bacterial consortium and sodium dodecyl sulphate. The level of pollution was 36.5% in the triplicate setup G2, G3 and G4. Fourier Transform Infrared spectroscopy was used to determine the degree of hydrocarbon degradation. The initial TPH value of 913.33 mg/kg was reduced by 84.44% (142 mg/kg) in soil inoculated with indigenous hydrocarbonoclastic bacterial isolates and by 88.28% (106.66 mg/kg) in biostimulated soil. Result of this study show that soil stimulation involving bacterial consortium and sodium dodecyl sulphate was more efficient than bioaugmentation strategy alone used in the remediation of spent engine oil-polluted soil.


Subject(s)
Ecosystem , Petroleum , Environmental Pollution , Hydrocarbons , Sodium Dodecyl Sulfate , Soil
2.
Arch Microbiol ; 204(9): 553, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35960398

ABSTRACT

Energy crisis and environmental sustainability have attracted global attention to microalgal biofuels. The present study investigated the impact of organic carbon sources on growth and bio-oil accumulation by an oleaginous microalga Desmodesmus subspicatus LC172266 under mixotrophic culture condition. Glucose and glycerol supported higher growth rates and lipid productivities than sucrose, fructose, mannitol and acetate. Each of the organic carbon source tested supported significantly (P < 0.05) higher growth rates and lipid productivities than the photoautotrophic culture (without organic carbon source). The lipid productivity obtained with a mixture of optima concentrations of glucose and glycerol (5.0 gL-1 glycerol + 10.0 gL-1glucose) (0.14875 ± 0.002 g/L/day) was about 25% and 66% higher than the values obtained with only 10.0 gL-1glucose and 5.0 gL-1glycerol, respectively. When a batch culture with 5gL-1glycerol was fed with 0.5 gL-1glucose daily the cell growth and lipid productivity were lower than the values obtained in a batch culture with a mixture of glucose and glycerol. The lipid productivity obtained in a 4-L photobioreactor was 94% (0.217 gL-1 day-1), higher than the value obtained in a flask culture with 10.0 g/Lglucose (0.112 gL-1 day-1) and 46% higher than the value obtained in a flask culture with 5.0 gL-1glycerol (0.086 gL-1 day-1).


Subject(s)
Carbon , Microalgae , Biofuels , Biomass , Glucose , Glycerol , Lipids
3.
Arch Microbiol ; 204(6): 306, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35532873

ABSTRACT

Crude oil degradation efficiency can be improved because of co-metabolism that exists when bacterial consortium is applied. However, because of possible vulnerability to environmental conditions and/or antagonistic interactions among members of the consortium, the degradation efficiency can be hampered. In this laboratory-based study, the biodegradation potentials of pure bacterial isolates namely Pseudomonas aeruginosa strain W15 (MW320658), Providencia vermicola strain W8 (MW320661) and Serratia marcescens strain W13 (MW320662) earlier isolated from crude oil-contaminated site and their consortium were evaluated using 3% crude oil-supplemented Bushnell Haas media. The efficiency was evaluated based on the viable cell count, biosurfactant analyses, percentage hydrocarbon degradation using gravimetric analysis and gas chromatography-mass spectrophotometry (GC-MS) analysis. There was decline in the population of W13 and predominance of W15 in the consortium as the incubation period progressed. Accelerated biodegradation of the crude oil hydrocarbons through co-metabolism was not achieved with the consortium; neither was there any improved resilience nor resistance to environmental changes of strain W13. The GC-MS analyses showed that the highest degradation was produced by W15 (48.23%) compared to W8 (46.04%), W13 (45.24%) and the Consortium (28.51%). The biodegradation of the crude oil hydrocarbons by W15, W8, W13 axenic cultures and their consortium treatments demonstrated that the bacterial constituent in a consortium can influence the synergistic effect that improves bioremediation. Future research that focuses on evaluating possible improvement in bioremediation through maintenance of diversity by continuous bioaugmentation using vulnerable but efficient degraders in a consortium is necessary to further understand the application of consortia for bioremediation improvement.


Subject(s)
Petroleum , Biodegradation, Environmental , Chromatography, Gas , Hydrocarbons/metabolism , Petroleum/metabolism , Serratia marcescens/metabolism
4.
Int. microbiol ; 25(2): 339-351, May. 2022. graf
Article in English | IBECS | ID: ibc-216036

ABSTRACT

Application of bacterial consortium of hydrocarbon degraders to crude oil–contaminated site can enhance bioremediation. This study evaluated the population dynamics and crude oil degradation abilities of various consortia developed from bacterial strains isolated from crude oil–contaminated sites using crude oil–supplemented Bushnell Haas media. Each consortium consisted of three bacterial strains and was designated as Consortium A (Serratia marcescens strain N4, Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11), B (Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), C (Serratia marcescens strain N4, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), and D (Pseudomonas aeruginosa strain W15, Providencia vermicola strain W8, Serratia marcescens strain W13). There was progressive decline in the populations of Serratia marcescens strains in the consortia as the incubation period progressed. This may have led to reduction in their synergistic contribution and, subsequently, total degradation ability of crude oil by the consortia. The gravimetric analyses showed that Consortium D produced the highest % crude oil degradation of 29.66% compared to Consortia A, B, and C with 23.73%, 11.86%, and 19.49% respectively. Based on gas chromatography–mass spectrometry analyses, Consortium D produced the highest percentage total petroleum hydrocarbon degradation of 73.65% compared to 68.24%, 68.94%, and 69.19% produced by Consortia A, B, and C respectively. The biodegradation potential of Consortium D also demonstrates the significance of using isolates from the same isolation site in development of consortium for bioremediation.(AU)


Subject(s)
Humans , Petroleum , Serratia marcescens , Pseudomonas aeruginosa , Biodegradation, Environmental , Hydrocarbons , Nigeria , Microbiology
5.
Int Microbiol ; 25(2): 339-351, 2022 May.
Article in English | MEDLINE | ID: mdl-34806142

ABSTRACT

Application of bacterial consortium of hydrocarbon degraders to crude oil-contaminated site can enhance bioremediation. This study evaluated the population dynamics and crude oil degradation abilities of various consortia developed from bacterial strains isolated from crude oil-contaminated sites using crude oil-supplemented Bushnell Haas media. Each consortium consisted of three bacterial strains and was designated as Consortium A (Serratia marcescens strain N4, Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11), B (Pseudomonas aeruginosa strain N3R, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), C (Serratia marcescens strain N4, Pseudomonas aeruginosa strain W11, Pseudomonas protegens strain P7), and D (Pseudomonas aeruginosa strain W15, Providencia vermicola strain W8, Serratia marcescens strain W13). There was progressive decline in the populations of Serratia marcescens strains in the consortia as the incubation period progressed. This may have led to reduction in their synergistic contribution and, subsequently, total degradation ability of crude oil by the consortia. The gravimetric analyses showed that Consortium D produced the highest % crude oil degradation of 29.66% compared to Consortia A, B, and C with 23.73%, 11.86%, and 19.49% respectively. Based on gas chromatography-mass spectrometry analyses, Consortium D produced the highest percentage total petroleum hydrocarbon degradation of 73.65% compared to 68.24%, 68.94%, and 69.19% produced by Consortia A, B, and C respectively. The biodegradation potential of Consortium D also demonstrates the significance of using isolates from the same isolation site in development of consortium for bioremediation.


Subject(s)
Petroleum , Biodegradation, Environmental , Hydrocarbons/metabolism , Nigeria , Petroleum/metabolism , Population Dynamics , Pseudomonas , Serratia marcescens/metabolism
6.
Bioresour Technol ; 227: 15-23, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28012374

ABSTRACT

Environmental consequences of high productivity piggeries are significant and can result in negative environmental impacts, hence bioremediation techniques (in particular using macroalgae) are therefore of great interest. Here, the growth potential of several freshwater macroalgae in anaerobic digestion piggery effluent (ADPE), their nutrient removal rates and biochemical composition of the biomass were investigated under outdoor climatic conditions. A consortium of two macroalgae, Rhizoclonium sp. and Ulothrix sp. was isolated and could efficiently grow in the ADPE. Maximum ammonium removal rate (30.6±6.50mg NH4+-NL-1d-1) was achieved at ADPE concentration equivalent to 248mgNH4+-NL-1. Mean biomass productivity of 31.1±1.14g ash-free dry weight (AFDW) m-2d-1 was achieved. Total carbohydrate and protein contents ranged between 42.8-54.8 and 43.4-45.0% AFDW, respectively, while total lipid content was very low. The study indicates the potential use of this macroalgal consortium for treating ADPE as well as source of animal feed production.


Subject(s)
Biodegradation, Environmental , Seaweed/growth & development , Waste Disposal, Fluid/methods , Animal Husbandry/methods , Animals , Biomass , Chlorophyta/metabolism , Seaweed/metabolism , Swine
7.
Braz. arch. biol. technol ; 54(1): 113-116, Jan.-Feb. 2011. tab
Article in English | LILACS | ID: lil-576766

ABSTRACT

In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42 percent) and was present in all the samples assayed. Mucor sp. was the least encountered (8.3 percent).The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL) and Aspergillus (6.25 -7.54 u/mL) spp. were the highest lipase producers while Mucor (5.72 u/mL) was the least.

SELECTION OF CITATIONS
SEARCH DETAIL
...