Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Nucleic Acids Res ; 51(19): 10375-10394, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37757859

ABSTRACT

Despite enabling Streptococcus pneumoniae to acquire antibiotic resistance and evade vaccine-induced immunity, transformation occurs at variable rates across pneumococci. Phase variants of isolate RMV7, distinguished by altered methylation patterns driven by the translocating variable restriction-modification (tvr) locus, differed significantly in their transformation efficiencies and biofilm thicknesses. These differences were replicated when the corresponding tvr alleles were introduced into an RMV7 derivative lacking the locus. RNA-seq identified differential expression of the type 1 pilus, causing the variation in biofilm formation, and inhibition of competence induction in the less transformable variant, RMV7domi. This was partly attributable to RMV7domi's lower expression of ManLMN, which promoted competence induction through importing N-acetylglucosamine. This effect was potentiated by analogues of some proteobacterial competence regulatory machinery. Additionally, one of RMV7domi's phage-related chromosomal island was relatively active, which inhibited transformation by increasing expression of the stress response proteins ClpP and HrcA. However, HrcA increased competence induction in the other variant, with its effects depending on Ca2+ supplementation and heat shock. Hence the heterogeneity in transformation efficiency likely reflects the diverse signalling pathways by which it is affected. This regulatory complexity will modulate population-wide responses to synchronising quorum sensing signals to produce co-ordinated yet stochastic bet hedging behaviour.


Subject(s)
Bacterial Proteins , Streptococcus pneumoniae , Bacterial Proteins/metabolism , Biofilms , Heat-Shock Proteins/metabolism , Quorum Sensing , Streptococcus pneumoniae/metabolism
2.
Cureus ; 15(2): e34804, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36915839

ABSTRACT

Ex-vivo perfusion describes the extra-corporeal delivery of fluid to an organ or tissue. Although it has been widely studied in the context of organ preservation and transplantation, it has also proven to be an invaluable tool in the development of novel models for translational pre-clinical research. Here, we review the literature reporting ex-vivo human liver perfusion experiments to further understand current perfusion techniques and protocols together with their applications. A computerised search was made of Ovid, MEDLINE, and Embase using the search words "ex-vivo liver or hepatic perfusion". All relevant studies in English describing experiments using ex-vivo perfusion of human livers between 2016 and 2021, inclusive, were included. Of 21 reviewed studies, 19 used ex-vivo human liver perfusion in the context of allogeneic liver transplantation. The quality and size of the studies varied considerably. Human liver perfusion was almost exclusively limited to whole organs and "split" livers, although one study did describe the successful perfusion of tissue sections following a partial hepatectomy. This review of recent literature involving ex-vivo human liver perfusion demonstrates that the technique is not limited to whole liver perfusion. Split-liver perfusion is extremely valuable allowing one lobe to act as a control and increasing the number available for research. This review also highlights the present lack of any reports of segmental liver perfusion. The discarded donor liver is a scarce resource, and the successful use of segmental perfusion has the potential to expand the available experimental models to facilitate pre-clinical experimentation.

3.
Sci Adv ; 9(12): eade1851, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36947610

ABSTRACT

Sensing of pathogens by ubiquitination is a critical arm of cellular immunity. However, universal ubiquitination targets on microbes remain unidentified. Here, using in vitro, ex vivo, and in vivo studies, we identify the first protein-based ubiquitination substrates on phylogenetically diverse bacteria by unveiling a strategy that uses recognition of degron-like motifs. Such motifs form a new class of intra-cytosolic pathogen-associated molecular patterns (PAMPs). Their incorporation enabled recognition of nonubiquitin targets by host ubiquitin ligases. We find that SCFFBW7 E3 ligase, supported by the regulatory kinase, glycogen synthase kinase 3ß, is crucial for effective pathogen detection and clearance. This provides a mechanistic explanation for enhanced risk of infections in patients with chronic lymphocytic leukemia bearing mutations in F-box and WD repeat domain containing 7 protein. We conclude that exploitation of this generic pathogen sensing strategy allows conservation of host resources and boosts antimicrobial immunity.


Subject(s)
F-Box Proteins , Humans , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Cell Cycle Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Phosphorylation , Ubiquitination , Bacteria/metabolism
4.
Cureus ; 15(2): e35143, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36949973

ABSTRACT

Introduction Ex vivo machine perfusion describes the technique where organs are continuously perfused and oxygenated extracorporeally (at physiological conditions) to maintain the organs' viability. To our knowledge, there are currently no reported studies describing ex vivo perfusion of a single hepatic segment. Here, we describe the development of a porcine ex vivo hepatic segmental perfusion model to demonstrate proof of concept and support further research into the ex vivo perfusion of the human liver using discarded tissue.  Methods Whole livers were retrieved from abattoir-derived pigs and connected to a normothermic extracorporeal perfusion circuit. Constant segmental perfusion via the common or segmental hepatic artery and portal vein with heparinised autologous blood was established. The viability of the perfused organ was assessed by monitoring perfusion pressures, flow rates and histology samples. Results Following perfusion and optimisation of the model for three hepatic segments, the third perfusion demonstrated viable hepatocytes centrally after 4 h of segmental perfusion. Conclusion Ex vivo hepatic segmental perfusion is technically challenging but its success in a porcine model and the principles learned should facilitate the development of an analogous human model using discarded tissue following formal liver resections. The model would use a healthy liver segment following a major formal resection such as a hemi-hepatectomy and ex vivo perfusion performed via a segmental hepatic artery and portal vein. If successful this model would represent a significant development and enable ethical translation research to assess the response of human livers to a variety of stressors, including toxicity and infection.

5.
Genome Med ; 14(1): 144, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539881

ABSTRACT

BACKGROUND: The respiratory pathogen Streptococcus pneumoniae (the pneumococcus) is a genetically diverse bacterium associated with over 101 immunologically distinct polysaccharide capsules (serotypes). Polysaccharide conjugate vaccines (PCVs) have successfully eliminated multiple targeted serotypes, yet the mucoid serotype 3 has persisted despite its inclusion in PCV13. This capsule type is predominantly associated with a single globally disseminated strain, GPSC12 (clonal complex 180). METHODS: A genomic epidemiology study combined previous surveillance datasets of serotype 3 pneumococci to analyse the population structure, dynamics, and differences in rates of diversification within GPSC12 during the period of PCV introductions. Transcriptomic analyses, whole genome sequencing, mutagenesis, and electron microscopy were used to characterise the phenotypic impact of loci hypothesised to affect this strain's evolution. RESULTS: GPSC12 was split into clades by a genomic analysis. Clade I, the most common, rarely underwent transformation, but was typically infected with the prophage ϕOXC141. Prior to the introduction of PCV13, this clade's composition shifted towards a ϕOXC141-negative subpopulation in a systematically sampled UK collection. In the post-PCV13 era, more rapidly recombining non-Clade I isolates, also ϕOXC141-negative, have risen in prevalence. The low in vitro transformation efficiency of a Clade I isolate could not be fully explained by the ~100-fold reduction attributable to the serotype 3 capsule. Accordingly, prophage ϕOXC141 was found to modify csRNA3, a non-coding RNA that inhibits the induction of transformation. This alteration was identified in ~30% of all pneumococci and was particularly common in the unusually clonal serotype 1 GPSC2 strain. RNA-seq and quantitative reverse transcriptase PCR experiments using a genetically tractable pneumococcus demonstrated the altered csRNA3 was more effective at inhibiting production of the competence-stimulating peptide pheromone. This resulted in a reduction in the induction of competence for transformation. CONCLUSION: This interference with the quorum sensing needed to induce competence reduces the risk of the prophage being deleted by homologous recombination. Hence the selfish prophage-driven alteration of a regulatory RNA limits cell-cell communication and horizontal gene transfer, complicating the interpretation of post-vaccine population dynamics.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/genetics , Serogroup , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Prophages/genetics , Pneumococcal Vaccines , Vaccines, Conjugate , RNA, Untranslated/genetics , RNA, Untranslated/pharmacology
6.
Front Immunol ; 13: 992659, 2022.
Article in English | MEDLINE | ID: mdl-36203580

ABSTRACT

People Living with HIV (PLHIV) are at an increased risk of pneumococcal pneumonia than HIV-uninfected adults, but the reasons for this are still not well understood. We investigated whether alveolar macrophages (AM) mediated control of pneumococcal infection is impaired in PLHIV compared to HIV-uninfected adults. We assessed anti-bactericidal activity against Streptococcus pneumoniae of primary human AM obtained from PLHIV and HIV-uninfected adults. We found that pneumococcus survived intracellularly in AMs at least 24 hours post ex vivo infection, and this was more frequent in PLHIV than HIV-uninfected adults. Corroborating these findings, in vivo evidence showed that PLHIV had a higher propensity for harboring S. pneumoniae within their AMs than HIV-uninfected adults. Moreover, bacterial intracellular survival in AMs was associated with extracellular propagation of pneumococcal infection. Our data suggest that failure of AMs to eliminate S. pneumoniae intracellularly could contribute to the increased risk of pneumococcal pneumonia in PLHIV.


Subject(s)
HIV Infections , Pneumococcal Infections , Pneumonia, Pneumococcal , Adult , Humans , Macrophages, Alveolar , Streptococcus pneumoniae
7.
mBio ; 13(6): e0235022, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36286550

ABSTRACT

The glial-lymphatic system (glymphatic system) is a recently characterized fluid clearance pathway of the central nervous system. Glymphatic system disfunctions leading to defects in drainage of the cerebrospinal fluid have been associated with several neurological disorders. In their article, J. S. Generoso, S. Thorsdottir, A. Collodel, R. R. E. Santo, et al. (mBio 13:e01886-22, 2022, https://doi.org/10.1128/mBio.01886-22) have now associated impaired glymphatic system functionality to neurological sequelae of murine meningitis caused by Streptococcus pneumoniae. Their work provides an initial and important step into the systematic evaluation of a potential impact of glymphatic system functionality on disease severity and sequelae in meningitis.


Subject(s)
Glymphatic System , Meningitis, Bacterial , Nervous System Diseases , Humans , Animals , Mice , Central Nervous System , Streptococcus pneumoniae , Disease Progression , Brain
8.
Front Immunol ; 13: 907461, 2022.
Article in English | MEDLINE | ID: mdl-35720383

ABSTRACT

Circadian rhythms affect the progression and severity of bacterial infections including those caused by Streptococcus pneumoniae, but the mechanisms responsible for this phenomenon remain largely elusive. Following advances in our understanding of the role of replication of S. pneumoniae within splenic macrophages, we sought to investigate whether events within the spleen correlate with differential outcomes of invasive pneumococcal infection. Utilising murine invasive pneumococcal disease (IPD) models, here we report that infection during the murine active phase (zeitgeber time 15; 15h after start of light cycle, 3h after start of dark cycle) resulted in significantly faster onset of septicaemia compared to rest phase (zeitgeber time 3; 3h after start of light cycle) infection. This correlated with significantly higher pneumococcal burden within the spleen of active phase-infected mice at early time points compared to rest phase-infected mice. Whole-section confocal microscopy analysis of these spleens revealed that the number of pneumococci is significantly higher exclusively within marginal zone metallophilic macrophages (MMMs) known to allow intracellular pneumococcal replication as a prerequisite step to the onset of septicaemia. Pneumococcal clusters within MMMs were more abundant and increased in size over time in active phase-infected mice compared to those in rest phase-infected mice which decreased in size and were present in a lower percentage of MMMs. This phenomenon preceded significantly higher levels of bacteraemia alongside serum IL-6 and TNF-α concentrations in active phase-infected mice following re-seeding of pneumococci into the blood. These data greatly advance our fundamental knowledge of pneumococcal infection by linking susceptibility to invasive pneumococcal infection to variation in the propensity of MMMs to allow persistence and replication of phagocytosed bacteria. These findings also outline a somewhat rare scenario whereby the active phase of an organism's circadian cycle plays a seemingly counterproductive role in the control of invasive infection.


Subject(s)
Pneumococcal Infections , Sepsis , Animals , Macrophages/microbiology , Mice , Phagocytosis , Pneumococcal Infections/microbiology , Sepsis/microbiology , Streptococcus pneumoniae
9.
J Exp Med ; 219(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35258552

ABSTRACT

Many encapsulated bacteria use capsules to cause invasive diseases. However, it remains largely unknown how the capsules enhance bacterial virulence under in vivo infection conditions. Here we show that the capsules primarily target the liver to enhance bacterial survival at the onset of blood-borne infections. In a mouse sepsis model, the capsules enabled human pathogens Streptococcus pneumoniae and Escherichia coli to circumvent the recognition of liver-resident macrophage Kupffer cells (KCs) in a capsular serotype-dependent manner. In contrast to effective capture of acapsular bacteria by KCs, the encapsulated bacteria are partially (low-virulence types) or completely (high-virulence types) "untouchable" for KCs. We finally identified the asialoglycoprotein receptor (ASGR) as the first known capsule receptor on KCs to recognize the low-virulence serotype-7F and -14 pneumococcal capsules. Our data identify the molecular interplay between the capsules and KCs as a master controller of the fate and virulence of encapsulated bacteria, and suggest that the interplay is targetable for therapeutic control of septic infections.


Subject(s)
Kupffer Cells , Pneumococcal Infections , Animals , Bacterial Capsules , Capsules , Liver , Mice , Streptococcus pneumoniae , Virulence
10.
Methods Mol Biol ; 2414: 405-431, 2022.
Article in English | MEDLINE | ID: mdl-34784049

ABSTRACT

Classical in vivo infection models are oftentimes associated with speculation due to the many physiological factors that are unseen or not accounted for when analyzing experimental outputs, especially when solely utilizing the classic approach of tissue-derived colony-forming unit (CFU) enumeration. To better understand the steps and natural progression of bacterial infection, the pathophysiology of individual organs with which the bacteria interact in their natural course of infection must be considered. In this case, it is not only important to isolate organs as much as possible from additional physiological processes, but to also consider the dynamics of the bacteria at the cellular level within these organs of interest. Here, we describe in detail two models, ex vivo porcine liver and spleen coperfusion and a murine infection model, and the numerous associated experimental outputs produced by these models that can be taken and used together to investigate the pathogen-host interactions within tissues in depth.


Subject(s)
Bacterial Infections , Macrophages , Animals , Liver , Mice , Spleen , Swine
11.
Microbiology (Reading) ; 168(12)2022 12.
Article in English | MEDLINE | ID: mdl-36748691

ABSTRACT

Streptococcus pneumoniae may inhabit the upper respiratory tract of humans without causing harm but it also causes diseases with high morbidity and mortality. It has excellent adaptive capabilities thanks to its ability to shuffle its genetic content by acquiring and incorporating DNA from other bacteria and is highly competent for genetic transformation. Sugar sensing, cleavage and transport ensure its fitness and survival in the host, and intracellular survival in macrophages has been linked to virulence. The polysaccharide capsule and toxin pneumolysin are the most important virulence determinants. Polysaccharide-based vaccines provide protection against the serotypes represented in vaccine formulations.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/genetics , Pneumococcal Infections/microbiology , Financial Stress , Virulence Factors , Virulence
12.
Lancet Microbe ; 2(12): e695-e703, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34901898

ABSTRACT

BACKGROUND: Hypervirulent Klebsiella pneumoniae (hvKp) strains of capsule type K1 and K2 cause invasive infections associated with hepatic abscesses, which can be difficult to treat and are frequently associated with relapsing infections. Other K pneumoniae strains (non-hvKp), including lineages that have acquired carbapenem resistance, do not manifest this pathology. In this work we aimed to test the hypothesis that within-macrophage replication is a key mechanism underpinning abscess formation in hvKp infections. METHODS: In this exploratory investigation, to study the pathophysiology of abscess formation, mice were intravenously infected with 106 colony forming units (CFU) of either hvKp isolates (six strains) or non-hvKp isolates (seven strains). Intracellular bacterial replication and neutrophil influx in liver and spleen was quantified by fluorescence microscopy of sliced cryopreserved organs of mice collected 30 min, 6 h, and 24 h after infection with the aim to provide data of bacterial association to Kupffer cells in the liver and to the different tissue macrophages in the spleen. Microbiological and microscopy analysis of an ex-vivo model of pig liver and spleen infection were used to confirm within-macrophage replication. Pig organs were perfused with heparinised, autologous pig's blood and injected with 6·5 × 107 CFU of hvKp K2 sequence type 25 strain GMR151. Blood and tissue biopsies collected before infection and 30 min, 1 h, 2 h, 3 h, 4 h, and 5 h after infection were used to measure bacterial counts and to identify the subcellular localisation of bacteria by immunohistochemistry analysis. FINDINGS: We show that hvKp resisted phagocyte-mediated clearance and replicated in mouse liver macrophages to form clusters 6 h after infection, with a mean of 7·0 bacteria per Kupffer cell (SD 6·2); however, non-hvKp were efficiently cleared (mean 1·5 bacteria per cell [SD 1·1]). HvKp infection promoted neutrophil recruitment to sites of infection, which in the liver resulted in histopathological signs of abscess formation as early as 24 h post-infection. Experiments in pig organs which share a high functional and anatomical resemblance to human organs, provided strong evidence for the propensity of hvKp to replicate within the hepatic macrophages. INTERPRETATION: These findings show subversion of innate immune processes in the liver by K pneumoniae and resistance to Kupffer cell mediated clearance as an explanation for the propensity of hvKp strains to cause hepatic abscesses. FUNDING: University of Oxford and a Royal Society Wolfson grant funded biosafety facility.


Subject(s)
Klebsiella Infections , Liver Abscess , Animals , Klebsiella Infections/diagnosis , Klebsiella pneumoniae , Liver Abscess/microbiology , Macrophages , Mice , Perfusion , Swine , Virulence
13.
EBioMedicine ; 72: 103601, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34619637

ABSTRACT

BACKGROUND: Severe community-acquired pneumococcal pneumonia is commonly associated with bacteraemia. Although it is assumed that the bacteraemia solely derives from pneumococci entering the blood from the lungs it is unknown if other organs are important in the pathogenesis of bacteraemia. Using three models, we tested the relevance of the spleen in pneumonia-associated bacteraemia. METHODS: We used human spleens perfused ex vivo to explore permissiveness to bacterial replication, a non-human primate model to check for splenic involvement during pneumonia and a mouse pneumonia-bacteraemia model to demonstrate that splenic involvement correlates with invasive disease. FINDINGS: Here we present evidence that the spleen is the reservoir of bacteraemia during pneumonia. We found that in the human spleen infected with pneumococci, clusters with increasing number of bacteria were detectable within macrophages. These clusters also were detected in non-human primates. When intranasally infected mice were treated with a non-therapeutic dose of azithromycin, which had no effect on pneumonia but concentrated inside splenic macrophages, bacteria were absent from the spleen and blood and importantly mice had no signs of disease. INTERPRETATION: We conclude that the bacterial load in the spleen, and not lung, correlates with the occurrence of bacteraemia. This supports the hypothesis that the spleen, and not the lungs, is the major source of bacteria during systemic infection associated with pneumococcal pneumonia; a finding that provides a mechanistic basis for using combination therapies including macrolides in the treatment of severe community-acquired pneumococcal pneumonia. FUNDING: Oxford University, Wolfson Foundation, MRC, NIH, NIHR, and MRC and BBSRC studentships supported the work.


Subject(s)
Bacteremia/microbiology , Macrophages/microbiology , Pneumonia, Pneumococcal/microbiology , Spleen/microbiology , Animals , Bacterial Load/physiology , Community-Acquired Infections/microbiology , Disease Models, Animal , Female , Humans , Mice , Papio/microbiology , Streptococcus pneumoniae/pathogenicity
14.
Exp Neurol ; 346: 113865, 2021 12.
Article in English | MEDLINE | ID: mdl-34547288

ABSTRACT

Leukocyte infiltration and blood-brain barrier breakdown contribute to secondary brain damage after traumatic brain injury (TBI). TBI induces neuroimmune responses triggering pathogenic complement activation through different pathways, including the lectin pathway. We investigated mechanisms underlying mannose-binding lectin (MBL)-mediated brain damage focusing on neutrophil infiltration and blood-brain barrier breakdown in a TBI mouse model. Wild type mice and MBL-/- null mice were subjected to controlled cortical impact. We studied neutrophil infiltration and regional localization by confocal microscopy 1, 4 and 15 days post-trauma, and investigated neutrophil extracellular trap (NET) formation. By immunofluorescence and/or Western blotting in various brain regions we studied the presence of fibrin(ogen), pentraxin-3, albumin and immunoglobulin G. Finally, we studied neurofilament proteins, synaptophysin, and αII-spectrin, and assessed white matter content in the injured tissue. TBI triggered an acute wave of neutrophil infiltration at day 1 followed by a more discrete persistence of neutrophils in the injured tissue at least until day 15. We detected the presence of NETs and pentraxin-3 in the injured tissue, as well as accumulation of fibrin(ogen), increased blood-brain barrier permeability, and neurofilament, synaptophysin and white matter loss, and calpain-mediated αII spectrin breakdown. MBL-/- mice showed reduced number of Ly6G+ neutrophils 4 days after TBI, lower accumulation of pentraxin-3 and fibrin(ogen) in the injured tissue, reduced global plasma protein extravasation, and better preservation of axonal and white matter integrity. These results show that MBL participates in secondary neutrophil accumulation and blood-brain barrier breakdown, and promotes axonal and white matter damage after TBI in mice.


Subject(s)
Axons/metabolism , Blood-Brain Barrier/metabolism , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Mannose-Binding Lectin/deficiency , Animals , Axons/immunology , Axons/pathology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Brain/immunology , Brain/pathology , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/pathology , Male , Mannose-Binding Lectin/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
15.
Genes (Basel) ; 12(8)2021 08 22.
Article in English | MEDLINE | ID: mdl-34440459

ABSTRACT

In recent years, there has been an observed increase in infections caused by carbapenem-resistant Klebsiella pneumonia (Kp) strains. The aim of this study was the phenotypic and genotypic analysis of eight K. pneumoniae NDM (Kp NDM) isolates, recovered in Poland during the years 2016 and 2018 from seven patients with urinary tract infections (UTIs), asymptomatic bacteriuria (ABU), or colonization of the gut. PCR melting profile genotyping indicated a close relationship between the strains derived from 2018, which were not related to the strain isolated in 2016. WGS results were analyzed in relation to international Kp isolates. Clonal and phylogenetic analyses were performed based on multilocus sequence typing (MLST) and single nucleotide polymorphisms (SNPs) of the core genome. The metallo-ß-lactamase was assigned to the NDM-1 type and the sequence was identified as ST11. Eleven antimicrobial resistance genes were detected, mostly from plasmid contigs. Unprecedented profiles of plasmid replicons were described with the IncFII/pKPX-1 dominant replicon. In terms of the KL24 and O2v1 capsular antigen profiles, these isolates corresponded to Greek strains. Strains isolated from UTI, ABU, and colonization GI tract patients were not carrying environment-specific virulence genes. Based on the assessment of strain relationships at the genome level and their direction of evolution, the international character of the sublines was demonstrated, with a documented epidemic potential in Poland and Greece. In conclusion, some groups of patients, e.g., renal transplant recipients or those with complicated UTIs, who are frequently hospitalized and undergoing antibiotic therapy, should be monitored not only for the risk of UTI, but also for colonization by Kp NDM strains.


Subject(s)
Bacteriuria/genetics , Klebsiella pneumoniae/genetics , Urinary Tract Infections/genetics , beta-Lactamases/genetics , Bacteriuria/drug therapy , Bacteriuria/microbiology , Carbapenems/pharmacology , Drug Resistance, Microbial/genetics , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Hospitals , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Plasmids/genetics , Polymorphism, Single Nucleotide/genetics , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
16.
Sci Rep ; 11(1): 9616, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953334

ABSTRACT

Long pentraxin PTX3, a pattern recognition molecule involved in innate immune responses, is upregulated by pro-inflammatory stimuli, contributors to secondary damage in traumatic brain injury (TBI). We analyzed PTX3 involvement in mice subjected to controlled cortical impact, a clinically relevant TBI mouse model. We measured PTX3 mRNA and protein in the brain and its circulating levels at different time point post-injury, and assessed behavioral deficits and brain damage progression in PTX3 KO mice. PTX3 circulating levels significantly increased 1-3 weeks after injury. In the brain, PTX3 mRNA was upregulated in different brain areas starting from 24 h and up to 5 weeks post-injury. PTX3 protein significantly increased in the brain cortex up to 3 weeks post-injury. Immunohistochemical analysis showed that, 48 h after TBI, PTX3 was localized in proximity of neutrophils, likely on neutrophils extracellular traps (NETs), while 1- and 2- weeks post-injury PTX3 co-localized with fibrin deposits. Genetic depletion of PTX3 did not affect sensorimotor deficits up to 5 weeks post-injury. At this time-point lesion volume and neuronal count, axonal damage, collagen deposition, astrogliosis, microglia activation and phagocytosis were not different in KO compared to WT mice. Members of the long pentraxin family, neuronal pentraxin 1 (nPTX1) and pentraxin 4 (PTX4) were also over-expressed in the traumatized brain, but not neuronal pentraxin 2 (nPTX2) or short pentraxins C-reactive protein (CRP) and serum amyloid P-component (SAP). The long-lasting pattern of activation of PTX3 in brain and blood supports its specific involvement in TBI. The lack of a clear-cut phenotype in PTX3 KO mice may depend on the different roles of this protein, possibly involved in inflammation early after injury and in repair processes later on, suggesting distinct functions in acute phases versus sub-acute or chronic phases. Brain long pentraxins, such as PTX4-shown here to be overexpressed in the brain after TBI-may compensate for PTX3 absence.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , C-Reactive Protein/metabolism , Neurons/metabolism , Serum Amyloid P-Component/metabolism , Up-Regulation , Animals , Brain Injuries/genetics , Brain Injuries/pathology , C-Reactive Protein/genetics , Collagen/metabolism , Disease Models, Animal , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Neurons/pathology , Neutrophils/metabolism , Serum Amyloid P-Component/genetics
17.
J Glob Antimicrob Resist ; 26: 77-83, 2021 09.
Article in English | MEDLINE | ID: mdl-34052522

ABSTRACT

OBJECTIVES: Surveillance studies for Staphylococcus aureus carriage are a primary tool to survey the prevalence of methicillin-resistant S. aureus (MRSA) in the general population, patients and healthcare workers. We have previously reported S. aureus carriage in various African countries, including Cape Verde. METHODS: Whole-genome sequences of 106 S. aureus isolates from Cape Verde were determined. RESULTS: Staphylococcus aureus carriage isolates in Cape Verde show high genetic variability, with the detection of 27 sequence types (STs) and three primary genetic clusters associated with ST152, ST15 and ST5. One transmission event with less than eight core-genome single nucleotide polymorphisms (cgSNP) differences was detected among the ST5-VI MRSA lineage. Genetic analysis confirmed the phenotypic resistance and allowed the identification of six independent events of plasmid or transposon loss associated with the deletion of blaZ in nine isolates. In the four ST5 MRSA isolates, loss of the blaZ plasmid coincided with the acquisition of SCCmec type VI and an unusual penicillin phenotype with a minimum inhibitory concentration (MIC) at the breakpoint, indicating an adaptation trend in this endemic lineage. Similar events of blaZ plasmid loss, with concomitant acquisition SCCmec elements, were detected among ST5 isolates from different geographical origins. CONCLUSION: Overall, the genome data allowed to place isolates in a phylogenetic context and to identify different blaZ gene deletions associated with plasmid or transposon loss. Genomic analysis unveiled adaptation and evolution trends, namely among emerging MRSA lineages in the country, which deserve additional consideration in the design of future infection control protocols.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Cabo Verde , Clone Cells , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Phylogeny , Staphylococcus aureus
18.
Front Microbiol ; 12: 607512, 2021.
Article in English | MEDLINE | ID: mdl-33584611

ABSTRACT

The accessory genomes of many pathogenic bacteria include ABC transporters that scavenge metal by siderophore uptake and ABC transporters that contribute to antimicrobial resistance by multidrug efflux. There are mechanistic and recently recognized structural similarities between siderophore importer proteins and efflux pumps. Here we investigated the influence of siderophore importer YbtPQ on antimicrobial resistance of Klebsiella pneumoniae. YbtPQ is encoded in the yersiniabactin cluster in a prevalent mobile genetic element ICEKp, and is also common in pathogenicity islands of Escherichia coli and Yersinia species, where yersiniabactin enhances virulence. Deletion of ICEKp increased the susceptibility of K. pneumoniae to all antimicrobials tested. The mechanism was dependent on the yersiniabactin importer YbtPQ and may involve antimicrobial efflux, since it was affected by the inhibitor reserpine. The element ICEKp is naturally highly mobile, indeed the accessory genome of K. pneumoniae is recognized as a reservoir of genes for the emergence of hospital outbreak strains and for transfer to other Gram-negative pathogens. Introduction of ICEKp, or a plasmid encoding YbtPQ, to E. coli decreased its susceptibility to a broad range of antimicrobials. Thus a confirmed siderophore importer, on a rapidly evolving and highly mobile element capable of interspecies transfer, may have a secondary function exporting antimicrobials.

19.
J Cereb Blood Flow Metab ; 41(8): 2038-2053, 2021 08.
Article in English | MEDLINE | ID: mdl-33444093

ABSTRACT

Beta-2 Glycoprotein I (ß2-GPI) is the main target of anti-phospholipid antibodies (aPL) in the autoimmune anti-phospholipid syndrome, characterized by increased risk of stroke. We here investigated the antibody independent role of ß2-GPI after ischemia/reperfusion, modeled in vivo by transient middle cerebral artery occlusion (tMCAo) in male C57Bl/6J mice; in vitro by subjecting immortalized human brain microvascular endothelial cells (ihBMEC) to 16 h hypoxia and 4 h re-oxygenation. ApoH (coding for ß2-GPI) was upregulated selectively in the liver at 48 h after tMCAo. At the same time ß2-GPI circulating levels increased. ß2-GPI was detectable in brain parenchyma and endothelium at all time points after tMCAo. Parenchymal ß2-GPI recognized apoptotic neurons (positive for annexin V, C3 and TUNEL) cleared by CD68+ brain macrophages. Hypoxic ihBMEC showed increased release of IL-6, over-expression of thrombomodulin and IL-1α after re-oxygenation with ß2-GPI alone. ß2-GPI interacted with mannose-binding lectin in mouse plasma and ihBMEC medium, potentially involved in formation of thrombi. We show for the first time that brain ischemia triggers the hepatic production of ß2-GPI. ß2-GPI is present in the ischemic endothelium, enhancing vascular inflammation, and extravasates binding stressed neurons before their clearance by phagocytosis. Thus ß2-GPI may be a new mediator of brain injury following ischemic stroke.


Subject(s)
Brain Ischemia/pathology , Neurons/metabolism , Vascular System Injuries/pathology , beta 2-Glycoprotein I/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Ischemia/etiology , Complement System Proteins/metabolism , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Interleukin-6/metabolism , Liver/metabolism , Liver/pathology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Male , Mannose-Binding Lectin/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Neurons/cytology , Phagocytosis , Protein Binding , Vascular System Injuries/complications , beta 2-Glycoprotein I/blood
20.
Brain Behav Immun ; 93: 299-311, 2021 03.
Article in English | MEDLINE | ID: mdl-33444732

ABSTRACT

C1 esterase inhibitor (C1INH) is known to exert its inhibitory effect by binding to several target proteases of the contact and complement systems. One of C1INH's targets comprise mannose-binding lectin (MBL), a critical player in post-stroke pathophysiology. We therefore explored the effects of recombinant human (rh) and plasma derived (pd) C1INH in C57BL/6J mice subjected to transient occlusion of the middle cerebral artery (tMCAo), receiving 15U/mouse of pd or rhC1INH intravenously, at reperfusion. We analyzed the compounds' (i)neuroprotective effects, (ii) plasma presence, (iii)effects on circulating and brain MBL, (iv)time course of endothelial deposition, and (v) effects on the formation of active complement products. rhC1INH-treated mice had neuroprotective effects, including reduced behavioral deficits and neuronal loss, associated with decreased MBL brain deposition and decreased formation of complement C4b active fragments. In contrast, pdC1INH did not show these neuroprotective effects despite its longer plasma residence time. We also analyzed the response to tMCAo in C1INH-deficient mice, observing a poorer ischemic outcome compared to the wild type mice, which could be partially prevented by rhC1INH administration. In conclusion, we show that rhC1INH exhibits stronger neuroprotective effects than the corresponding plasma-derived protein after experimental ischemia/reperfusion injury in the brain, placing it as a promising drug for stroke. Differential effects are likely related to more effective MBL inhibition which further confirms it as a useful pharmacological target for stroke.


Subject(s)
Pharmaceutical Preparations , Reperfusion Injury , Animals , Brain/metabolism , Complement C1 Inhibitor Protein/metabolism , Mice , Mice, Inbred C57BL , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...