Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Mol Cytogenet ; 10: 12, 2017.
Article in English | MEDLINE | ID: mdl-28396697

ABSTRACT

BACKGROUND: Traditional testing of miscarriage products involved culture of tissue followed by G-banded chromosome analysis; this approach has a high failure rate, is labour intensive and has a resolution of around 10 Mb. G-banded chromosome analysis has been replaced by molecular techniques in some laboratories; we previously introduced a QF-PCR/MLPA testing strategy in 2007. To improve diagnostic yield and efficiency we have now updated our testing strategy to a more comprehensive QF-PCR assay followed by array CGH. Here we describe the results from the last 5 years of service. METHODS: Fetal tissue samples and products of conception were tested using QF-PCR which will detect aneuploidy for chromosomes 13, 14, 15, 16, 18, 21, 22, X and Y. Samples that were normal were then tested by aCGH and all imbalance >1Mb and fully penetrant clinically significant imbalance <1Mb was reported. RESULTS: QF-PCR analysis identified aneuploidy/triploidy in 25.6% of samples. aCGH analysis detected imbalance in a further 9.6% of samples; this included 1.8% with submicroscopic imbalance and 0.5% of uncertain clinical significance. This approach has a failure rate of 1.4%, compared to 30% for G-banded chromosome analysis. CONCLUSIONS: This efficient QF-PCR/aCGH strategy has a lower failure rate and higher diagnostic yield than karyotype or MLPA strategies; both findings are welcome developments for couples with recurrent miscarriage.

2.
J Med Genet ; 53(8): 536-47, 2016 08.
Article in English | MEDLINE | ID: mdl-27073233

ABSTRACT

BACKGROUND: The pseudoautosomal short stature homeobox-containing (SHOX) gene encodes a homeodomain transcription factor involved in cell-cycle and growth regulation. SHOX/SHOX enhancers deletions cause short stature and skeletal abnormalities in a female-dominant fashion; duplications appear to be rare. Neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASDs), are complex disorders with high heritability and skewed sex ratio; several rare (<1% frequency) CNVs have been implicated in risk. METHODS: We analysed data from a discovery series of 90 adult ASD cases, who underwent clinical genetic testing by array-comparative genomic hybridisation (CGH). Twenty-seven individuals harboured CNV abnormalities, including two unrelated females with microduplications affecting SHOX. To determine the prevalence of SHOX duplications and delineate their associated phenotypic spectrum, we subsequently examined array-CGH data from a follow-up sample of 26 574 patients, including 18 857 with NDD (3541 with ASD). RESULTS: We found a significant enrichment of SHOX microduplications in the NDD cases (p=0.00036; OR 2.21) and, particularly, in those with ASD (p=9.18×10(-7); OR 3.63) compared with 12 594 population-based controls. SHOX duplications affecting the upstream or downstream enhancers were enriched only in females with NDD (p=0.0043; OR 2.69/p=0.00020; OR 7.20), but not in males (p=0.404; OR 1.38/p=0.096; OR 2.21). CONCLUSIONS: Microduplications at the SHOX locus are a low penetrance risk factor for ASD/NDD, with increased risk in both sexes. However, a concomitant duplication of SHOX enhancers may be required to trigger a NDD in females. Since specific SHOX isoforms are exclusively expressed in the developing foetal brain, this may reflect the pathogenic effect of altered SHOX protein dosage on neurodevelopment.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Copy Number Variations/genetics , Gene Duplication/genetics , Homeodomain Proteins/genetics , Neurodevelopmental Disorders/genetics , Pseudoautosomal Regions/genetics , Adolescent , Adult , Child , Child, Preschool , Comparative Genomic Hybridization/methods , Female , Genetic Testing/methods , Growth Disorders/genetics , Humans , Male , Middle Aged , Sequence Deletion/genetics , Short Stature Homeobox Protein , Transcription Factors/genetics , Young Adult
3.
Clin Anat ; 29(5): 620-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27012322

ABSTRACT

The neuro-behavioral disorder of autism was first described in the 1940s and was predicted to have a biological basis. Since that time, with the growth of genetic investigations particularly in the area of pediatric development, an increasing number of children with autism and related disorders (autistic spectrum disorders, ASD) have been the subject of genetic studies both in the clinical setting and in the wider research environment. However, a full understanding of the biological basis of ASDs has yet to be achieved. Early observations of children with chromosomal abnormalities detected by G-banded chromosome analysis (karyotyping) and in situ hybridization revealed, in some cases, ASD associated with other features arising from such an abnormality. The introduction of higher resolution techniques for whole genome screening, such as array comparative genome hybridization (aCGH), allowed smaller imbalances to be detected, some of which are now considered to represent autism susceptibility loci. In this review, we describe some of the work underpinning the conclusion that ASDs have a genetic basis; a brief history of the developments in genetic analysis tools over the last 50 years; and the most common chromosome abnormalities found in association with ASDs. Introduction of next generation sequencing (NGS) into the clinical diagnostic setting is likely to provide further insights into this complex field but will not be covered in this review. Clin. Anat. 29:620-627, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Autistic Disorder/genetics , Chromosome Aberrations , DNA Copy Number Variations , Humans
4.
J Neurodev Disord ; 6(1): 9, 2014.
Article in English | MEDLINE | ID: mdl-24834135

ABSTRACT

BACKGROUND: The chromodomain helicase DNA binding domain (CHD) proteins modulate gene expression via their ability to remodel chromatin structure and influence histone acetylation. Recent studies have shown that CHD2 protein plays a critical role in embryonic development, tumor suppression and survival. Like other genes encoding members of the CHD family, pathogenic mutations in the CHD2 gene are expected to be implicated in human disease. In fact, there is emerging evidence suggesting that CHD2 might contribute to a broad spectrum of neurodevelopmental disorders. Despite growing evidence, a description of the full phenotypic spectrum of this condition is lacking. METHODS: We conducted a multicentre study to identify and characterise the clinical features associated with haploinsufficiency of CHD2. Patients with deletions of this gene were identified from among broadly ascertained clinical cohorts undergoing genomic microarray analysis for developmental delay, congenital anomalies and/or autism spectrum disorder. RESULTS: Detailed clinical assessments by clinical geneticists showed recurrent clinical symptoms, including developmental delay, intellectual disability, epilepsy, behavioural problems and autism-like features without characteristic facial gestalt or brain malformations observed on magnetic resonance imaging scans. Parental analysis showed that the deletions affecting CHD2 were de novo in all four patients, and analysis of high-resolution microarray data derived from 26,826 unaffected controls showed no deletions of this gene. CONCLUSIONS: The results of this study, in addition to our review of the literature, support a causative role of CHD2 haploinsufficiency in developmental delay, intellectual disability, epilepsy and behavioural problems, with phenotypic variability between individuals.

5.
Eur J Hum Genet ; 22(6): 748-53, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24129433

ABSTRACT

Our study provides an analysis of the outcome of meiotic segregation of three-way translocations in cleavage-stage embryos and the accuracy and limitations of preimplantation genetic diagnosis (PGD) using the fluorescence in situ hybridization technique. We propose a general model for estimating reproductive risks for carriers of this class of complex chromosome rearrangement. The data presented describe six cycles for four couples where one partner has a three-way translocation. For male heterozygotes, 27.6% of embryos were consistent with 3:3 alternate segregation resulting in a normal or balanced translocation chromosome complement; 41.4% were consistent with 3:3 adjacent segregation of the translocations, comprising 6.9% reflecting adjacent-1 and 34.5% adjacent-2 segregation; 24.1% were consistent with 4:2 nondisjunction; none showed 5:1 or 6:0 segregation; the probable mode could not be ascertained for 6.9% of embryos due to complex mosaicism or nucleus fragmentation. The test accuracy for male heterozygotes was estimated to be 93.1% with 100% sensitivity and 75% specificity. With 72.4% prevalence, the predictive value was estimated to be 91.3% for an abnormal test result and 100% for a normal test result. Two of four couples had a healthy baby following PGD. The proportion of normal/balanced embryo could be significantly less for female heterozygotes, and our model indicates that this could be detrimental to the effectiveness of PGD. A 20% risk of live-born offspring with an unbalanced translocation is generally accepted, largely based on the obstetric history of female heterozygotes; we suggest that a 3% risk may be more appropriate for male carriers.


Subject(s)
Chromosome Segregation , Cleavage Stage, Ovum/metabolism , Meiosis/genetics , Translocation, Genetic , Adult , Cleavage Stage, Ovum/cytology , Embryo Transfer/methods , Female , Heterozygote , Humans , In Situ Hybridization, Fluorescence , Karyotype , Male , Middle Aged , Models, Genetic , Pregnancy , Preimplantation Diagnosis/methods , Preimplantation Diagnosis/statistics & numerical data , Reproducibility of Results , Retrospective Studies , Risk Factors
6.
Mol Cytogenet ; 6(1): 55, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24314262

ABSTRACT

BACKGROUND: Array comparative genomic hybridization (CGH) for high resolution detection of chromosome imbalance, and karyotype analysis using G-banded chromosomes for detection of chromosome rearrangements, provide a powerful diagnostic armoury for clinical cytogenetics. However, abnormalities detected by karyotype analysis cannot always be characterised by scrutinising the G-banded pattern alone, and imbalance detected by array CGH cannot always be visualised in the context of metaphase chromosomes. In some cases further techniques are needed for detailed characterisation of chromosomal abnormalities. We investigated seven cases involving structural chromosome rearrangements detected by karyotype analysis, and one case where imbalance was primarily detected by array CGH. Multicolor banding (MCB) was used in all cases and proved invaluable in understanding the detailed structure of the abnormalities. FINDINGS: Karyotype analysis detected structural chromosome rearrangements in 7 cases and MCB was used to help refine the karyotype for each case. Array CGH detected imbalance in an eighth case, where previously, G-banded chromosome analysis had reported a normal karyotype. Karyotype analysis of a second tissue type revealed this abnormality in mosaic form; however, MCB was needed in order to characterise this rearrangement. MCB provided information for the delineation of small deletions, duplications, insertions and inversions and helped to assign breakpoints which were difficult to identify from G-banded preparations due to ambiguous banding patterns. CONCLUSION: Despite the recent advance of array CGH in molecular cytogenetics we conclude that fluorescence in situ hybridization, including MCB, is still required for the elucidation of structural chromosome rearrangements, and remains an essential adjunct in modern diagnostic laboratories.

7.
PLoS One ; 8(4): e61365, 2013.
Article in English | MEDLINE | ID: mdl-23637818

ABSTRACT

Copy number variants (CNVs) at chromosome 16p13.11 have been associated with a range of neurodevelopmental disorders including autism, ADHD, intellectual disability and schizophrenia. Significant sex differences in prevalence, course and severity have been described for a number of these conditions but the biological and environmental factors underlying such sex-specific features remain unclear. We tested the burden and the possible sex-biased effect of CNVs at 16p13.11 in a sample of 10,397 individuals with a range of neurodevelopmental conditions, clinically referred for array comparative genomic hybridisation (aCGH); cases were compared with 11,277 controls. In order to identify candidate phenotype-associated genes, we performed an interval-based analysis and investigated the presence of ohnologs at 16p13.11; finally, we searched the DECIPHER database for previously identified 16p13.11 copy number variants. In the clinical referral series, we identified 46 cases with CNVs of variable size at 16p13.11, including 28 duplications and 18 deletions. Patients were referred for various phenotypes, including developmental delay, autism, speech delay, learning difficulties, behavioural problems, epilepsy, microcephaly and physical dysmorphisms. CNVs at 16p13.11 were also present in 17 controls. Association analysis revealed an excess of CNVs in cases compared with controls (OR = 2.59; p = 0.0005), and a sex-biased effect, with a significant enrichment of CNVs only in the male subgroup of cases (OR = 5.62; p = 0.0002), but not in females (OR = 1.19, p = 0.673). The same pattern of results was also observed in the DECIPHER sample. Interval-based analysis showed a significant enrichment of case CNVs containing interval II (OR = 2.59; p = 0.0005), located in the 0.83 Mb genomic region between 15.49-16.32 Mb, and encompassing the four ohnologs NDE1, MYH11, ABCC1 and ABCC6. Our data confirm that duplications and deletions at 16p13.11 represent incompletely penetrant pathogenic mutations that predispose to a range of neurodevelopmental disorders, and suggest a sex-limited effect on the penetrance of the pathological phenotypes at the 16p13.11 locus.


Subject(s)
Chromosomes, Human, Pair 16 , DNA Copy Number Variations , Developmental Disabilities/genetics , Child , Chromosome Deletion , Chromosome Duplication , Chromosomes, Human, Pair 16/genetics , Cohort Studies , Comparative Genomic Hybridization , Female , Humans , Male , Phenotype
8.
Reprod Biomed Online ; 26(6): 522-4, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23602677

ABSTRACT

The avoidance of twin or higher-order multiple pregnancies is in the best interest of families, medical practitioners and health services, given the health hazards and costs associated with higher-order multiples. This commentary explores the background to and ideas in the paper by Legendre et al., (2013), which makes the case for separate consideration of the various issues around selective termination of a multiple pregnancy and fetal reduction. The exploration does so mainly within the context of UK law and practice, but has international relevance. The responsibilities of health professionals for putting many of these women in the difficult position of having to make a decision about selective termination or fetal reduction is critically reviewed. The imperative must be for health professionals to reduce the need for women to have to make these difficult choices. In these circumstances, I argue that the differences in motivation and emotional burden between the two situations may be less clear cut, and are less salient, in practice than Legendre et al. conclude from their theoretical approach to the issues.


Subject(s)
Abortion, Induced , Pregnancy Reduction, Multifetal , Pregnancy, Multiple , Female , Humans , Pregnancy
9.
Mol Cytogenet ; 6(1): 16, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23560982

ABSTRACT

BACKGROUND: Array CGH is widely used in cytogenetics centres for postnatal constitutional genome analysis, and is now recommended as a first line test in place of G-banded chromosome analysis. At our centre, first line testing by oligonucleotide array CGH for all constitutional referrals for genome imbalance has been in place since June 2008, using a patient vs patient hybridisation strategy to minimise costs. FINDINGS: Out of a total of 13,412 patients tested with array CGH, 8,794 (66%) had array CGH as the first line test. Referral indications for this first line group ranged from neonatal congenital anomalies through to adult neurodisabilities; 25% of these patients had CNVs either in known pathogenic regions or in other regions where imbalances have not been reported in the normal population. Of these CNVs, 46% were deletions or nullisomy, 53% were duplications or triplications, and mosaic imbalances made up the remainder; 87% were <5Mb and would likely not be detected by G-banded chromosome analysis. For cases with completed inheritance studies, 20% of imbalances were de novo. CONCLUSIONS: Array CGH is a robust and cost-effective alternative to traditional cytogenetic methodology; it provides a higher diagnostic detection rate than G-banded chromosome analysis, and adds to the sum of information and understanding of the role of genomic imbalance in disease. Use of novel hybridisation strategies can reduce costs, allowing more widespread testing.

10.
Am J Med Genet A ; 161A(3): 566-71, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23401053

ABSTRACT

Preimplantation genetic diagnosis (PGD) has been carried out for two couples with different mosaic Robertsonian translocations. Two PGD cycles for a mosaic 13;13 homologous Robertsonian translocation carrier resulted in the birth of a healthy child in each cycle, illustrating the importance of scanning G-banded preparations from homologous Robertsonian carriers for the presence of a normal cell line. One couple was referred for PGD because the male partner carried a mosaic 14;15 Robertsonian translocation with a normal cell line. A single PGD cycle resulted in the birth of a healthy child. Follow-up studies and extended FISH analysis of the carrier's lymphocytes detected three cell lines, two carrying different 14;15 Robertsonian chromosomes and one normal cell line. The two 14;15 Robertsonian chromosomes had different breakpoints in the proximal short arm regions. We suggest that the presence of the D15Z1 polymorphism on the short arm of one chromosome 14 mediated the post-zygotic formation of the two different Robertsonian chromosomes.


Subject(s)
Preimplantation Diagnosis , Translocation, Genetic , Abnormal Karyotype , Adult , Child, Preschool , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 14 , Chromosomes, Human, Pair 15 , Female , Fertilization in Vitro , Heterozygote , Humans , Infant , Male , Mosaicism , Pregnancy
11.
J Mol Psychiatry ; 1(1): 4, 2013.
Article in English | MEDLINE | ID: mdl-25408897

ABSTRACT

BACKGROUND: Microdeletions in the NRXN1 gene have been associated with a range of neurodevelopmental disorders, including autism spectrum disorders, schizophrenia, intellectual disability, speech and language delay, epilepsy and hypotonia. RESULTS: In the present study we performed array CGH analysis on 10,397 individuals referred for diagnostic cytogenetic analysis, using a custom oligonucleotide array, which included 215 NRXN1 probes (median spacing 4.9 kb). We found 34 NRXN1 deletions (0.33% of referrals) ranging from 9 to 942 kb in size, of which 18 were exonic (0.17%). Three deletions affected exons also in the beta isoform of NRXN1. No duplications were found. Patients had a range of phenotypes including developmental delay, learning difficulties, attention deficit hyperactivity disorder (ADHD), autism, speech delay, social communication difficulties, epilepsy, behaviour problems and microcephaly. Five patients who had deletions in NRXN1 had a second CNV implicated in neurodevelopmental disorder: a CNTNAP2 and CSMD3 deletion in patients with exonic NRXN1 deletions, and a Williams-Beuren syndrome deletion and two 22q11.2 duplications in patients with intronic NRXN1 deletions. CONCLUSIONS: Exonic deletions in the NRXN1 gene, predominantly affecting the alpha isoform, were found in patients with a range of neurodevelopmental disorders referred for diagnostic cytogenetic analysis. The targeting of dense oligonucleotide probes to the NRXN1 locus on array comparative hybridisation platforms provides detailed characterisation of deletions in this gene, and is likely to add to understanding of the importance of NRXN1 in neural development.

12.
Prenat Diagn ; 32(12): 1197-204, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23097180

ABSTRACT

OBJECTIVE: To present the results of 10 years of quantitative fluorescence PCR (QF-PCR) analysis of prenatal samples for the rapid diagnosis of the common aneuploidies. This represents the largest QF-PCR data set from a single testing centre. METHODS: QF-PCR analysis using a single assay containing 17 microsatellite markers was applied to all prenatal samples for the identification of trisomies 13, 18 and 21 and triploidy. A separate assay containing 14 sex chromosome markers was targeted to prenatal samples at increased risk of monosomy X. RESULTS: Results from 40,624 prenatal samples comprising 14,144 chorionic villus and 26,480 amniotic fluid samples are summarised. A QF-PCR result was not possible for 2.24% amniotic fluid and 0.25% chorionic villus samples because of the presence of an additional genotype consistent with maternal cell contamination. Just 0.08% samples were uninformative for one or more chromosomes and 0.05% of samples failed to produce a genotype. Ninety-eight percent of samples were reported the following working day from sample receipt. Consumable costs were £ 5/sample. CONCLUSION: QF-PCR analysis is proven to be an accurate, robust and efficient method for the rapid diagnosis of common aneuploidies in prenatal samples. It has the advantage of detecting triploidy and mosaicism and benefits from considerable economy of scale.


Subject(s)
Monosomy/diagnosis , Polymerase Chain Reaction/methods , Prenatal Diagnosis/methods , Trisomy/diagnosis , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 18 , Chromosomes, Human, Pair 21 , Chromosomes, Human, X , Female , Fluorescence , Humans , Monosomy/genetics , Pregnancy , Retrospective Studies , Sex Chromosome Aberrations , Time Factors , Trisomy/genetics
13.
Prenat Diagn ; 32(4): 309-14, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22467160

ABSTRACT

Quantitative fluorescent polymerase chain reaction has been in diagnostic use in the UK for over 10 years and has proved to be a cost-effective, robust and accurate rapid prenatal test for common aneuploidies. Specific advantages include detection of triploidy, mosaicism and maternal cell contamination. Its application at our centre is described, with developments including stand-alone testing and improvements in strategies for the preparation and testing of chorionic villus biopsies.


Subject(s)
Amniocentesis/methods , Amniotic Fluid/cytology , Chorionic Villi Sampling/methods , Chromosome Disorders/diagnosis , Polymerase Chain Reaction/methods , Adult , Amniotic Fluid/chemistry , Chromosome Disorders/genetics , Female , Humans , Molecular Diagnostic Techniques/methods , Pregnancy , Reproducibility of Results
14.
Eur J Med Genet ; 55(5): 342-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22342432

ABSTRACT

BACKGROUND: The emergence of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated recognition of microdeletions and microduplications as risk factors for both generalised and focal epilepsies. Furthermore, there is evidence that some microdeletions/duplications, such as the 15q13.3 deletion predispose to a range of neuropsychiatric disorders, including intellectual disability (ID), autism, schizophrenia and epilepsy. We hypothesised that array CGH would reveal relevant findings in an adult patient group with epilepsy and complex phenotypes. METHODS: 82 patients (54 from the National Hospital for Neurology and Neurosurgery and 28 from King's College Hospital) with drug-resistant epilepsy and co-morbidities had array CGH. Separate clinicians ordered array CGH and separate platforms were used at the two sites. RESULTS: In the two independent groups we identified copy number variants judged to be of pathogenic significance in 13.5% (7/52) and 20% (5/25) respectively, noting that slightly different selection criteria were used, giving an overall yield of 15.6%. Sixty-nine variants of unknown significance were also identified in the group from the National Hospital for Neurology and Neurosurgery and 5 from the King's College Hospital patient group. CONCLUSION: We conclude that array CGH be considered an important investigation in adults with complicated epilepsy and, at least at present for selected patients, should join the diagnostic repertoire of clinical history and examination, neuroimaging, electroencephalography and other indicated investigations in generating a more complete formulation of an individual's epilepsy.


Subject(s)
Abnormalities, Multiple/genetics , Comparative Genomic Hybridization , Epilepsy/genetics , Abnormalities, Multiple/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Chromosome Aberrations , Chromosomes, Human/genetics , Cohort Studies , Comorbidity , Developmental Disabilities/epidemiology , Developmental Disabilities/genetics , Drug Resistance , Epilepsy/drug therapy , Epilepsy/epidemiology , Female , Genes , Humans , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Male , Middle Aged , Mutation , Young Adult
15.
Hum Reprod ; 27(4): 951-3, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22328558

ABSTRACT

The emergence of the array comparative genomic hybridization technique (aCGH) is considered an advance in preimplantation genetic testing. Analysis of the recently published pilot study using polar body aCGH indicates that the test accuracy compares favourably with the fluorescence in situ hybridization technique although a substantial number of euploid zygotes are still likely to be excluded incorrectly. A sound argument against selection in principle has recently been published, based on accumulating evidence that potentially all embryos can now be cryopreserved and transferred in subsequent frozen replacement cycles without impairing pregnancy rates. We suggest that vitrification and serial transfer without testing are likely to give patients the best chance for a successful pregnancy, and avoid the use of an expensive technology.


Subject(s)
Blastocyst/physiology , Comparative Genomic Hybridization/methods , Fertilization in Vitro/trends , Preimplantation Diagnosis/methods , Aneuploidy , Cryopreservation , Embryo Transfer , Female , Humans , Polar Bodies , Pregnancy , Pregnancy Rate
16.
J Vis Exp ; (48)2011 Feb 23.
Article in English | MEDLINE | ID: mdl-21403624

ABSTRACT

Pre-implantation genetic diagnosis (PGD) is an established alternative to pre-natal diagnosis, and involves selecting pre-implantation embryos from a cohort generated by assisted reproduction technology (ART). This selection may be required because of familial monogenic disease (e.g. cystic fibrosis), or because one partner carries a chromosome rearrangement (e.g. a two-way reciprocal translocation). PGD is available for couples who have had previous affected children, and/or in the case of chromosome rearrangements, recurrent miscarriages, or infertility. Oocytes aspirated following ovarian stimulation are fertilized by in vitro immersion in semen (IVF) or by intracytoplasmic injection of an individual spermatozoon (ICSI). Pre-implantation cleavage-stage embryos are biopsied, usually by the removal of a single cell on day 3 post-fertilization, and the biopsied cell is tested to establish the genetic status of the embryo. Fluorescence in situ hybridization (FISH) on the fixed nuclei of biopsied cells with target-specific DNA probes is the technique of choice to detect chromosome imbalance associated with chromosome rearrangements, and to select female embryos in families with X-linked disease for which there is no mutation-specific test. FISH has also been used to screen embryos for spontaneous chromosome aneuploidy (also known as PGS or PGD-AS) in order to try and improve the efficiency of assisted reproduction; however, the predictive value of this test using the spreading and FISH technique described here is likely to be unacceptably low in most people's hands and it is not recommended for routine clinical use. We describe the selection of suitable probes for single-cell FISH, spreading techniques for blastomere nuclei, and in situ hybridization and signal scoring, applied to PGD in a clinical setting.


Subject(s)
In Situ Hybridization, Fluorescence/methods , Preimplantation Diagnosis/methods , Female , Humans , Pregnancy
17.
J Med Genet ; 48(8): 535-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21429933

ABSTRACT

OBJECTIVE: To calculate and discuss the percentage of imbalance for selected cancer predisposition genes in patients referred for routine diagnostic array comparative genomic hybridisation (CGH). DESIGN: Audit of findings from application of array CGH for patients referred for developmental delay, behavioural abnormalities and birth defects in 4805 patients referred to Guy's and St Thomas' NHS Foundation Trust for cytogenetic investigation from South East London, Kent and East Sussex and other genetic centres across the UK. RESULTS: 29 of 4805 (0.6%) patients examined by array CGH had genomic imbalance of <5 Mb involving cancer predisposition genes. Six patients were referred for syndromes involving cancer predisposition genes; none of the other 23 patients with array CGH findings in cancer predisposition genes had any symptoms/family history stated on their referral form suggestive for the respective syndrome. Twelve whole gene deletions, two partial deletions, 12 duplications, two partial duplications, and one mosaic duplication were observed. In 17/29 patients (59%), inheritance could not be established, eight imbalances were de novo, and four inherited. CONCLUSIONS: This new technology raises the possibility of unexpected findings in cancer predisposition genes. Therefore, the possibility of such findings has to be addressed in pre-test and post-test counselling by genetically trained healthcare professionals. As many of these findings have not been described previously, their clinical significance is unknown and patients need long-term follow-up to determine their clinical relevance. This will enable genetic healthcare professionals to advise such people about their cancer risks and appropriate cancer risk management options.


Subject(s)
Comparative Genomic Hybridization/methods , Genetic Predisposition to Disease , Neoplasms/genetics , Adult , Allelic Imbalance/genetics , Child, Preschool , Humans , Infant , Infant, Newborn , Young Adult
18.
Eur J Med Genet ; 54(2): 121-9, 2011.
Article in English | MEDLINE | ID: mdl-21056703

ABSTRACT

Mosaicism for chromosome imbalance has traditionally been detected by karyotype analysis. The introduction of array CGH into clinical diagnostic laboratories and routine clinical practice has raised concerns as to the ability of this new test to detect the presence of more than one cell line. We present our validation data on the detection of chromosome mosaicism by oligonucleotide array CGH, and the cases detected in a cohort of 3042 clinical referrals. Using an artificial mosaicism series, we found that oligonucleotide array CGH using specific analysis parameters could accurately measure levels of mosaicism down to 10% and that the degree of mosaicism could be predicted from fluorescence ratios. We detected 12 cases of mosaicism in our clinical cohort, in 9 of which there was no previous indication of mosaicism. In two cases, G-banded chromosome analysis had been carried out previously, and had failed to detect the abnormal cell line. Three cases had mosaicism for the X chromosome and 9 involved autosomes, of which 4 were mosaic for whole chromosome trisomies, one for whole chromosome monosomy, and four were mosaic for segmental imbalances. We conclude that oligonucleotide array CGH has the power to detect a range of mosaic abnormalities in clinical diagnostic samples.


Subject(s)
Chromosome Aberrations , Comparative Genomic Hybridization/methods , Mosaicism , Oligonucleotide Array Sequence Analysis/instrumentation , Comparative Genomic Hybridization/instrumentation , Humans , Loss of Heterozygosity , Mosaicism/classification , Polyploidy
19.
Mol Cytogenet ; 3: 19, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20942916

ABSTRACT

BACKGROUND: Array CGH has recently been introduced into our laboratory in place of karyotype analysis for patients with suspected genomic imbalance. Results require confirmation to check sample identity, and analysis of parental samples to determine inheritance and thus assess the clinical significance of the abnormality. Here we describe an MLPA-based strategy for the follow-up of abnormal aCGH results. RESULTS: In the first 17 months of our MLPA-based aCGH follow-up service, 317 different custom MLPA probes for novel aCGH-detected abnormalities were developed for inheritance studies in 164 families. In addition, 110 samples were tested for confirmation of aCGH-detected abnormalities in common syndromic or subtelomeric regions using commercial MLPA kits. Overall, a total of 1215 samples have been tested by MLPA. A total of 72 de novo abnormalities were confirmed. CONCLUSIONS: Confirmation of aCGH-detected abnormalities and inheritance of these abnormalities are essential for accurate diagnosis and interpretation of aCGH results. The development of a new service utilising custom made MLPA probes and commercial MLPA kits for follow-up studies of array CGH results has been found to be efficient and flexible in our laboratory.

20.
J R Soc Interface ; 7 Suppl 6: S677-88, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-20826474

ABSTRACT

The use of stem cells for regenerative medicine has captured the imagination of the public, with media attention contributing to rising expectations of clinical benefits. Human embryonic stem cells (hESCs) are the best model for capital investment in stem cell therapy and there is a clear need for their robust genetic characterization before scaling-up cell expansion for that purpose. We have to be certain that the genome of the starting material is stable and normal, but the limited resolution of conventional karyotyping is unable to give us such assurance. Advanced molecular cytogenetic technologies such as array comparative genomic hybridization for identifying chromosomal imbalances, and single nucleotide polymorphism analysis for identifying ethnic background and loss of heterozygosity should be introduced as obligatory diagnostic tests for each newly derived hESC line before it is deposited in national stem cell banks. If this new quality standard becomes a requirement, as we are proposing here, it would facilitate and accelerate the banking process, since end-users would be able to select the most appropriate line for their particular application, thus improving efficiency and streamlining the route to manufacturing therapeutics. The pharmaceutical industry, which may use hESC-derived cells for drug screening, should not ignore their genomic profile as this may risk misinterpretation of results and significant waste of resources.


Subject(s)
Embryonic Stem Cells/transplantation , Regenerative Medicine/standards , Cell Culture Techniques , Comparative Genomic Hybridization , Embryo Culture Techniques , Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Genomic Instability , Humans , Karyotyping , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...