Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117838, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31822454

ABSTRACT

We report mid-infrared spectra of silane dispersed in solid neon at relative concentrations 1:1000 and 1:5000, recorded with spectral resolution 0.15 cm-1. Apart from major lines associated with internal vibrational motions of 28SiH4, 29SiH4 and 30SiH4 in fundamental modes ν3 and ν4, several weak accompanying lines in each region become discernible at the resolution of our experimental measurements, and are tentatively associated with librational motions of silane molecules in the solid neon lattice. The wavenumbers associated with a few overtone and combination modes are also presented.

2.
Phys Chem Chem Phys ; 20(19): 13113-13117, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29717733

ABSTRACT

Irradiation of O2 dispersed in solid Ne with ultraviolet light produced infrared absorption lines of O3 and emission lines from atomic O (1D2 → 3P1,2), molecular O2 (A' 3Δu → X 3Σg) and radical OH (A 2Σ+ → X 2ΠI) in the visible and near-ultraviolet regions. The threshold wavelength for the formation of O3 was determined to be 200 ± 4 nm, corresponding to energy 6.20 ± 0.12 eV, which is hence the threshold for dissociation of O2. The thresholds of emission from excited O (1D2), O2 (A' 3Δu) and OH (A 2Σ+) were all observed to be 200 ± 4 nm, the same as for the formation of O3 in this photochemical system. The results indicate that, once O3 was generated, it was readily photolyzed to produce the long-lived atom O (1D2). Further reactions of O (1D2) with O3 produced excited O2 (A' 3Δu); reaction with water yielded radical OH (A 2Σ+). These results enhance our understanding of the evolution of the transformation of oxygen and open a window for the understanding of complicated processes in the solid phase.

3.
Phys Chem Chem Phys ; 20(11): 7730-7738, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29498724

ABSTRACT

Irradiation at 173 or 143 nm of samples of 16O2 or 18O2 in solid Ne near 4 K produced many new spectral lines in absorption and emission from the mid-infrared to the near-ultraviolet regions. The major product was ozone, O3, that was identified with its mid-infrared and near-ultraviolet absorption lines. Oxygen atoms were formed on photolysis of O2 and stored in solid neon until the temperature of a sample was increased to 9 K, which enabled their migration and combination to form O3 and likely also O2. O2 in five excited states and O in two excited states detected through the emission spectra indicate that complicated processes occurred in solid Ne after far-ultraviolet excitation. For the transition 1D2 → 3P1,2 of O, the lifetime was determined to be 5.87 ± 0.10 s; the lifetime of the upper state of an unidentified transition associated with an emission feature at 701.7 nm was determined to be 2.34 ± 0.07 s.

4.
Chemphyschem ; 18(1): 124-127, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27806185

ABSTRACT

Apart from products H, B, BH, BH2 and BH3 identified from their emission spectra in the UV/Vis region, photolysis of diborane(6) dispersed in solid neon at 4 K with far-ultraviolet light from a synchrotron led to observation of absorption line (0,0) of the electronic transition A 3 Σu- ←X 3 Σg- of B2 at 326.39 nm. Absorption lines (1,0) of 11 B2 , 11 B10 B and 10 B2 were recorded at 316.63, 316.40 and 316.15 nm, respectively. ΔG1/2 of state A 3 Σu- for 11 B2 , 11 B10 B and 10 B2 in solid neon are accordingly derived to be 945, 968 and 993 cm-1 , respectively. Weak lines (0,1) of 11 B2 at 29586 cm-1 and of 11 B10 B at 29560 cm-1 , corresponding to 1042±30 and 1068±30 cm-1 for vibrational modes in the electronic ground state, were recorded in emission. An absorption line recorded at 1066.5±0.5 cm-1 in infrared spectra after photolysis of either B2 H6 in Ne or B2 D6 with D2 in Ne is thus attributed to 11 B10 B.

5.
J Phys Chem A ; 120(28): 5562-72, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27351464

ABSTRACT

We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state.

6.
Chem Sci ; 6(12): 6872-6877, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-29861928

ABSTRACT

The irradiation of diborane(6) dispersed in solid neon at 3 K with tunable far-ultraviolet light from a synchrotron yielded a set of IR absorption lines, the pattern of which implies a carrier containing two boron atoms. According to isotope effects and quantum-chemical calculations, we identified this new species as diborane(4), B2H4, possessing two bridging B-H-B bonds. Our work thus establishes a new prototype, diborane(4), for bridging B-H-B bonds in molecular structures.

7.
Chem Commun (Camb) ; 50(59): 7968-70, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24912563

ABSTRACT

Infrared absorption lines of methylidene--(12)C(1)H, (13)C(1)H, and (12)C(2)H--dispersed in solid neon at 3 K, recorded after photolysis of methane precursors with vacuum-ultraviolet light at 121.6 nm, serve as signatures of these trapped radicals.

8.
J Phys Chem A ; 118(19): 3438-49, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24766071

ABSTRACT

Samples of pure methane and of methane dispersed in solid neon at 3 K subjected to irradiation at wavelengths less than 165 nm with light from a synchrotron yielded varied products that were identified through their infrared absorption spectra, including CH3, C2H2, C2H3, C2H4, C2H6, C4H2, C4H4, C5H2, C8H2, CnH with n = 1-5, and carbon chains Cn with n = 3-20. The efficiency of photolysis of methane and the nature of the photoproducts depended on the concentration of methane and the wavelength selected for irradiation; an addition of H2 into solid neon enhanced the formation of long carbon chains.

9.
J Chem Phys ; 129(17): 174303, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-19045343

ABSTRACT

The reaction between O((1)D) and C(6)H(6) (or C(6)D(6)) was investigated with crossed-molecular-beam reactive scattering and time-resolved Fourier-transform infrared spectroscopy. From the crossed-molecular-beam experiments, four product channels were identified. The major channel is the formation of three fragments CO+C(5)H(5)+H; the channels for formation of C(5)H(6)+CO and C(6)H(5)O+H from O((1)D)+C(6)H(6) and OD+C(6)D(5) from O((1)D)+C(6)D(6) are minor. The angular distributions for the formation of CO and H indicate a mechanism involving a long-lived collision complex. Rotationally resolved infrared emission spectra of CO (12.9 for O((1)D)+C(6)D(6) is consistent with the expectation for an abstraction reaction. The mechanism of the reaction may be understood from considering the energetics of the intermediate species and transition states calculated at the G2M(CC5) level of theory for the O((1)D)+C(6)H(6) reaction. The experimentally observed branching ratios and deuterium isotope effect are consistent with those predicted from calculations.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 71(4): 1485-91, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18635391

ABSTRACT

With radiation from a synchrotron we measured the spectra of several small molecular species, in the solid phase at 10K, either pure--O2, NO, CO2, N2O, H2O and NH3--or, for NH3, also dispersed in Ar at molar ratio 1/250, from the onset of absorption in the ultraviolet region until the limits of transmission by crystalline LiF or solid Ar. In a quantitative treatment of spectral data, we fitted the total absorption profile divided by wavenumber to Gaussian curves of minimal number, and made tentative assignments of electronic transitions and vibrational structure by comparison with spectra of gaseous species. These results illuminate the nature of electronic spectra of samples in solid phases in the vacuum ultraviolet region.


Subject(s)
Spectrophotometry, Ultraviolet/methods , Absorption , Ammonia/chemistry , Argon , Carbon Dioxide/chemistry , Electrochemistry/methods , Electronics , Nitric Oxide/chemistry , Normal Distribution , Oxygen/chemistry , Temperature , Ultraviolet Rays , Water/chemistry
11.
J Phys Chem A ; 109(35): 7854-8, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16834165

ABSTRACT

We have recorded extremely weak absorption in the overtone band 5-0 of 12C16O X 1sigma+ near 0.96 microm with cavity ringdown spectroscopy; the light source was a Raman-shifted dye laser pumped with a frequency-doubled Nd:YAG laser. This band shows lines in branch P to be much more intense than corresponding lines in branch R, in contrast to all lower overtone bands v-0 (v = 1-4). This reversal in relative intensity is explained quantitatively in terms of a radial function for the electric dipolar moment of CO. We have estimated absorption line strengths for P3-P18 in band 5-0 of 12C16O; these strengths are consistent with a pure vibrational matrix element <5/p(x)/0> = (3.6 +/- 0.3) x 10(-36) C m of the electric dipolar moment p(x), a Herman-Wallis coefficient C0(5) of about -0.1, and a band strength of (5.1 +/- 1.3) x 10(-29) m at 293 K.

12.
J Mol Spectrosc ; 207(2): 143-152, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11397102

ABSTRACT

To evaluate individual expansion coefficients composing fitting parameters of the Born-Oppenheimer corrections to Dunham's coefficients Y(ij) that have been given analytically with the Delta(B) and Delta(omega) formalism, we examined the consistency of analytic expressions for those corrections with Watson's assertion of the experimental inseparability of nonadiabatic corrections Q(a, b)(r) for a molecule AB. Derived analytic expressions in terms of optimal fitting parameters for the corrections are essential to evaluate individual expansion coefficients. These expressions also reveal redundancies between empirical correction parameters Delta(ij). A method of evaluating nonadiabatic vibrational corrections Q(a, b)(r) and adiabatic corrections S(a, b)(r) separately consistent with Watson's assertion of inseparability is presented and is applied to an analysis of spectral data of LiH. Functions Q(a, b) and S(a, b) for LiH are thus successfully evaluated; S(H, Li)(r) values agree well with those predicted simply by wobble-stretch theory. Experimental values for optimal fitting parameters r(H)(1q) and r(H)(2q) are nearly equal to those of r(Li)(1q) and r(Li)(2q), respectively, in agreement with a theoretical relation r(a)(iq)=r(b)(iq). Copyright 2001 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL
...