Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 110(6): 1119-35, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23022678

ABSTRACT

BACKGROUND AND AIMS: Investigating intraspecific karyotypic and genetic variations jointly can provide unique insights into how historical, ecological and cytogenetic factors influence microevolution. A coastal herb, Lysimachia mauritiana, exhibits extensive karyotypic polymorphism and displays a complex cytogeographic pattern across the Ryukyus. To explore whether a similar degree of chromosomal variation exists south of the Ryukyus, and in an attempt to ascertain the mechanisms that may have generated the patterns, comprehensive sampling was conducted in Taiwan. METHODS: Karyotypes were analysed at mitotic metaphase for 550 individuals from 42 populations throughout Taiwan Proper and its adjacent islands. In addition, genetic variation was estimated using 12 allozymes (21 loci) of 314 individuals sampled from 12 localities. KEY RESULTS: Four chromosome numbers and eight cytotypes, including four endemic cytotypes, were detected. Cytotype distributions were highly structured geographically, with single cytotypes present in most populations and four major cytotypes dominating the north, east and south of Taiwan and the Penghu Archipelago. Allozyme variation was very low and F-statistics indicated an extremely high level of population differentiation, implying limited gene flow among populations. Cluster analysis of allozyme variation uncovered four geographic groups, each corresponding perfectly to the four dominant cytotypes. The geographic structure of cytotype distribution and allozyme variation probably resulted from severe genetic drift triggered by genetic bottlenecks, suggesting that Taiwanese populations were likely to be derived from four independent founder events. In the few localities with multiple cytotypes, cytogeographic patterns and inferences of chromosomal evolution revealed a trend of northward dispersal, consistent with the course of the Kuroshio Current that has been influential in shaping the coastal biota of the region. CONCLUSIONS: The data elucidate the patterns of colonization and the effects of the Kuroshio Current on the distribution of L. mauritiana in Taiwan. These inferences are highly relevant to other coastal plant species in the region and will stimulate further studies.


Subject(s)
Isoenzymes , Polymorphism, Genetic/genetics , Primulaceae/genetics , Biological Evolution , Chromosomes, Plant/genetics , Genetic Loci/genetics , Genetic Variation , Genetics, Population , Geography , Karyotype , Meiosis/genetics , Mitosis/genetics , Phylogeny , Primulaceae/enzymology , Taiwan
2.
Ann Bot ; 106(3): 467-82, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20616113

ABSTRACT

BACKGROUND AND AIMS: Farfugium (Asteraceae) is a small genus that contains the two species F. japonicum and F. hiberniflorum and is distributed along a long archipelago in east Asia. The common taxon, F. japonicum, includes three varieties associated with a wide range of habitats, including forest understorey (sciophytes), coastal crag (heliophytes) and riverbed (rheophytes). Leaf shape is an important taxonomic character within this genus and is associated with the habitat. METHODS: Twenty populations that included all Farfugium taxa were collected throughout its range. Leaf morphology was measured to determine differences amongst the taxa. Phylogenetic analyses based on sequences of the internal transcribed spacer of nuclear rDNA and four plastid DNA regions (matK, trnL-trnF, trnH-psbA and rpl20-rps12) were conducted separately. KEY RESULTS: Leaf morphology was significantly different amongst taxa, but morphological variations were partly explained by adaptation to certain environmental conditions that each population inhabited. Molecular phylogenies for the nDNA internal transcribed spacer and cpDNA were consistent in classifying F. hiberniflorum and the Taiwanese var. formosanum, whilst suggesting polyphyletic origins for the rheophyte, sciophyte and heliophyte taxa. All samples from the southern Ryukyus (Japan) and Taiwan clustered into a monophyletic group, which corroborates the land configuration theory involving Quaternary land-bridge formation and subsequent fragmentation into islands. The incongruence between the two DNA datasets may imply traces of introgressive hybridization and/or incomplete lineage sorting. CONCLUSIONS: The occurrence of rheophyte, sciophyte and heliophyte plants within Farfugium may be attributable to their isolation on islands and subsequent adaptation to the riparian, coastal crag and forest understorey environments, following their migration over the Quaternary land-bridge formation along their distribution range. Nearly identical DNA sequences coupled with highly divergent morphologies amongst these taxa suggest that diversification was rapid.


Subject(s)
Asteraceae/classification , Cell Nucleus/genetics , DNA, Ribosomal/genetics , Ecosystem , Phylogeny , Plastids/genetics , Asteraceae/genetics
3.
J Plant Res ; 122(4): 439-44, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19367445

ABSTRACT

Polyploidy, which is thought to have played an important role in plant evolution and speciation, is prevalent in Chrysanthemum (x = 9). In fact, polyploid series are known in C. zawadskii (2x, 4x, 6x, 8x, and 10x) and C. indicum (2x, 4x, and 6x), but the mechanism by which polyploidization occurs is unknown. Here we show that in diploid individuals of both C. zawadskii and C. indicum, the fusion between two adjacent pollen mother cells (PMCs) occurs at a frequency of 1.1-1.3% early in the first meiotic division. While possessing the chromosomes of both PMCs, the fused cell or syncyte undertakes subsequent meiotic division processes as a single large PMC, producing four 2n pollen grains that are able to germinate. Despite their low frequency, syncyte formation may have played a major role in the production of infraspecific polyploids in Chrysanthemum.


Subject(s)
Chrysanthemum/cytology , Chrysanthemum/genetics , Germ Cells, Plant/cytology , Polyploidy , Gametogenesis, Plant/physiology , Germination/physiology , Meiosis , Pollen/anatomy & histology , Pollen/cytology , Species Specificity
4.
J Plant Res ; 119(4): 309-20, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16636746

ABSTRACT

We present a summary of currently available chromosome information for all seven families in the order Laurales on the basis of original and previously published data and discuss the evolution of chromosomes in this order. Based on a total of 53 genera for which chromosome data were available, basic chromosome numbers appear consistent within families: x = 11 (Calycanthaceae); x = 22 (Atherospermataceae and Siparunaceae); x = 19 (Monimiaceae); and x = 12 and 15 (Lauraceae). The Hernandiaceae have diverse numbers: x = 15 (Gyrocarpoideae) and x = 18 and 20 (Hernandioideae). Karyotype analyses showed that Hennecartia, Kibaropsis, and Matthaea (all Monimiaceae) contained two or three sets of four distinct chromosomes in 38 somatic chromosomes, suggesting that 2n = 38 was derived by aneuploid reduction from 2n = 40, a tetraploid of x = 10. In light of the overall framework of phylogenetic relationships in the Laurales, we show that x = 11 is an archaic base number in the order and is retained in the Calycanthaceae, which are sister to the remainder of the order. Polyploidization appears to have occurred from x = 11 to x = 22 in a common clade of the Siparunaceae, Atherospermataceae, and Gomortegaceae (although 2n = 42 in the Gomortegaceae), and aneuploid reduction from x = 11 to x = 10 occurred in a common clade of the Hernandiaceae, Lauraceae, and Monimiaceae. To understand chromosome evolution in the Lauraceae, however, more studies are needed of genera and species of Cryptocaryeae.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Lauraceae/genetics , Aneuploidy , Karyotyping , Polyploidy
5.
J Plant Res ; 115(3): 225-35, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12579372

ABSTRACT

The karyomorphology of all 14 species of Taiwanese Begonia was investigated to elucidate their chromosome features and chromosomal evolution. Among all species investigated, differences in chromosome features are found in: (1) chromosome number 2 n = 22, 26, 36, 38, 52, 60, 64, 82, and (2) frequencies of chromosomes with secondary, tertiary, and/or small constrictions of polyploids, ranging from 23% to 63%, which is higher than the expected value of about 9%. It is suggested that after polyploidization from the diploid species (i.e., 2 n = 22 and frequencies of chromosomes with secondary, tertiary, and/or small constrictions of polyploids of about 9%), chromosome translocations occurred, followed by a decrease in chromosome number, and subsequently stabilized genomes were formed in various species in Taiwan. The karyomorphological evidence also suggested that the chromosome morphology has evolved in parallel in the begonias belonging to different sections in Taiwan. The variation in chromosomal features is more complex than the variation in floral and fruit morphologies. Karyomorphological data also supports the recognition of five new species in Taiwan: Begonia bouffordii, B. chuyunshanensis, B. pinglinensis, B. tengchiana, and B. wutaiana. Based on detailed karyomorphological analyses, the taxonomic implications, speciation, and chromosomal evolution in Taiwanese Begoniaare discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...