Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 615(7954): 858-865, 2023 03.
Article in English | MEDLINE | ID: mdl-36949201

ABSTRACT

Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.


Subject(s)
Anthozoa , Coral Reefs , Extreme Heat , Fishes , Global Warming , Invertebrates , Oceans and Seas , Seawater , Seaweed , Animals , Australia , Fishes/classification , Invertebrates/classification , Global Warming/statistics & numerical data , Seaweed/classification , Population Dynamics , Population Density , Seawater/analysis , Extinction, Biological , Conservation of Natural Resources/trends , Echinodermata/classification
2.
Curr Biol ; 32(19): 4128-4138.e3, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36150387

ABSTRACT

Warming seas, marine heatwaves, and habitat degradation are increasingly widespread phenomena affecting marine biodiversity, yet our understanding of their broader impacts is largely derived from collective insights from independent localized studies. Insufficient systematic broadscale monitoring limits our understanding of the true extent of these impacts and our capacity to track these at scales relevant to national policies and international agreements. Using an extensive time series of co-located reef fish community structure and habitat data spanning 12 years and the entire Australian continent, we found that reef fish community responses to changing temperatures and habitats are dynamic and widespread but regionally patchy. Shifts in composition and abundance of the fish community often occurred within 2 years of environmental or habitat change, although the relative importance of these two mechanisms of climate impact tended to differ between tropical and temperate zones. The clearest of these changes on temperate and subtropical reefs were temperature related, with responses measured by the reef fish thermal index indicating reshuffling according to the thermal affinities of species present. On low latitude coral reefs, the community generalization index indicated shifting dominance of habitat generalist fishes through time, concurrent with changing coral cover. Our results emphasize the importance of maintaining local ecological detail when scaling up datasets to inform national policies and global biodiversity targets. Scaled-up ecological monitoring is needed to discriminate among increasingly diverse drivers of large-scale biodiversity change and better connect presently disjointed systems of biodiversity observation, indicator research, and governance.


Subject(s)
Anthozoa , Coral Reefs , Animals , Anthozoa/physiology , Australia , Biodiversity , Climate Change , Ecosystem , Fishes/physiology
3.
Mar Pollut Bull ; 95(1): 324-32, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25882229

ABSTRACT

Urbanisation of the coastal zone represents a key threat to marine biodiversity, including rocky reef communities which often possess disproportionate ecological, recreational and commercial importance. The nature and magnitude of local urban impacts on reef biodiversity near three Australian capital cities were quantified using visual census methods. The most impacted reefs in urbanised embayments were consistently characterised by smaller, faster growing species, reduced fish biomass and richness, and reduced mobile invertebrate abundance and richness. Reef faunal distribution varied significantly with heavy metals, local population density, and proximity to city ports, while native fish and invertebrate communities were most depauperate in locations where invasive species were abundant. Our study adds impetus for improved urban planning and pollution management practises, while also highlighting the potential for skilled volunteers to improve the tracking of changes in marine biodiversity values and the effectiveness of management intervention.


Subject(s)
Biodiversity , Cities/statistics & numerical data , Coral Reefs , Fishes , Invertebrates , Water Pollution , Animals , Australia , Biomass , Metals, Heavy , Population Density , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...