Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.691
Filter
1.
Proteomics ; 24(11): e2300062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829178

ABSTRACT

Extracellular vesicles (EVs) are membrane-surrounded vesicles released by various cell types into the extracellular microenvironment. Although EVs vary in size, biological function, and components, their importance in cancer progression and the potential use of EV molecular species to serve as novel cancer biomarkers have become increasingly evident. Cancer cells actively release EVs into surrounding tissues, which play vital roles in cancer progression and metastasis, including invasion and immune modulation. EVs released by cancer cells are usually chosen as a gateway in the search for biomarkers for cancer. In this review, we mainly focused on molecular profiling of EV protein constituents from breast cancer, emphasizing mass spectrometry (MS)-based proteomic approaches. To further investigate the potential use of EVs as a source of breast cancer biomarkers, we have discussed the use of these proteins as predictive marker candidates. Besides, we have also summarized the key characteristics of EVs as potential therapeutic targets in breast cancer and provided significant information on their implications in breast cancer development and progression. Information provided in this review may help understand the recent progress in understanding EV biology and their potential role as new noninvasive biomarkers as well as emerging therapeutic opportunities and associated challenges.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Extracellular Vesicles , Mass Spectrometry , Proteomics , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Extracellular Vesicles/metabolism , Female , Mass Spectrometry/methods , Proteomics/methods
2.
J Med Virol ; 96(5): e29648, 2024 May.
Article in English | MEDLINE | ID: mdl-38727032

ABSTRACT

The effects of COVID-19 vaccination on short-term and long-term cerebrovascular risks among COVID-19 survivors remained unknown. We conducted a national multi-center retrospective cohort study with 151 597 vaccinated and 151 597 unvaccinated COVID-19 patients using the TriNetX database, from January 1, 2020 to December 31, 2023. Patients baseline characteristics were balanced with propensity score matching (PSM). The outcomes were incident cerebrovascular diseases occurred between 1st and 30th days (short-term) after COVID-19 diagnosis. Nine subgroup analyses were conducted to explore potential effect modifications. We performed six sensitivity analyses, including evaluation of outcomes between 1st to 180th days, accounting for competing risk, and incorporating different variant timeline to test the robustness of our results. Kaplan-Meier curves and Log-Rank tests were performed to evaluate survival difference. Cox proportional hazards regressions were adopted to estimate the PSM-adjusted hazard ratios (HR). The overall short-term cerebrovascular risks were lower in the vaccinated group compared to the unvaccinated group (HR: 0.66, 95% CI: 0.56-0.77), specifically cerebral infarction (HR: 0.62, 95% CI: 0.48-0.79), occlusion and stenosis of precerebral arteries (HR: 0.74, 95% CI: 0.53-0.98), other cerebrovascular diseases (HR: 0.57, 95% CI: 0.42-0.77), and sequelae of cerebrovascular disease (HR: 0.39, 95% CI:0.23-0.68). Similarly, the overall cerebrovascular risks were lower in those vaccinated among most subgroups. The long-term outcomes, though slightly attenuated, were consistent (HR: 0.80, 95% CI: 0.73-0.87). Full 2-dose vaccination was associated with a further reduced risk of cerebrovascular diseases (HR: 0.63, 95% CI: 0.50-0.80) compared to unvaccinated patients. Unvaccinated COVID-19 survivors have significantly higher cerebrovascular risks than their vaccinated counterparts. Thus, clinicians are recommended to monitor this population closely for stroke events during postinfection follow-up.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cerebrovascular Disorders , Vaccination , Humans , Cerebrovascular Disorders/epidemiology , Cerebrovascular Disorders/etiology , COVID-19/prevention & control , COVID-19/epidemiology , Female , Male , Retrospective Studies , Middle Aged , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Aged , Vaccination/statistics & numerical data , Survivors/statistics & numerical data , Adult , SARS-CoV-2/immunology , Risk Factors , Proportional Hazards Models
3.
BMC Geriatr ; 24(1): 464, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802798

ABSTRACT

BACKGROUND: The population is rapidly aging and remains active over the age of 65 years. An increasing number of sports-related fractures (SRFs) in individuals 65 and older are thus anticipated. Despite the increase in SRFs among the geriatric population, there are limited studies regarding the epidemiological data regarding SRFs in geriatric patients. This study examined the epidemiology of SRFs in a geriatric population who visited a level I trauma center. METHODS: Data from geriatric patients who visited a level I trauma center were collected between June 2020 and July 2023. Overall, 1,109 geriatric patients with fractures were included in the study. Among them, 144 (13.0%) had fractures during sports activities (SRF group) and 965 (87.0%) had fractures during non-sports activities (non-SRF group). We investigated the type of sport in the SRFs and compared SRFs and NSRFs to describe the differences in patient, fracture, and treatment characteristics. RESULTS: The mean age of SRFs was significantly lower (73.6 vs. 78.7 years; P < .001). The proportion of men was significantly higher in the SRF group than in the non-SRF group (51.4 vs. 29.6%; P < .001). We identified 13 types of sports associated with fractures, and the four most common were outdoor walking (36.1%), outdoor biking (27.8%), mountain hiking (19.4%), and gym (8.3%). There were no significant differences in the rate of hospitalization, operative treatment, or length of hospital stay between the two groups. However, compared to the non-SRF group, patients in the SRF group tended to return home after hospitalization (P = .002). CONCLUSION: This epidemiological study describes geriatric population that continues to be involved in sports and is thus susceptible to fractures. The identification of the type and distribution of SRFs in geriatric patients provides useful information for determining risk factors and appropriate preventive measures that may reduce their incidence.


Subject(s)
Athletic Injuries , Fractures, Bone , Trauma Centers , Humans , Male , Female , Aged , Trauma Centers/trends , Fractures, Bone/epidemiology , Aged, 80 and over , Athletic Injuries/epidemiology , Retrospective Studies
4.
J Microbiol Biotechnol ; 34(7): 1-10, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755008

ABSTRACT

The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.

5.
Toxics ; 12(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38787150

ABSTRACT

"Organoids", three-dimensional self-organized organ-like miniature tissues, are proposed as intermediary models that bridge the gap between animal and human studies in drug development. Despite recent advancements in organoid model development, studies on toxicity using these models are limited. Therefore, in this study, we aimed to analyze the functionality and gene expression of pre- and post-differentiated human hepatic organoids derived from induced pluripotent stem cells and utilize them for toxicity assessment. First, we confirmed the functional similarity of this hepatic organoid model to the human liver through various functional assessments, such as glycogen storage, albumin and bile acid secretion, and cytochrome P450 (CYP) activity. Subsequently, utilizing these functionally validated hepatic organoids, we conducted toxicity evaluations with three hepatotoxic substances (ketoconazole, troglitazone, and tolcapone), which are well known for causing drug-induced liver injury, and three non-hepatotoxic substances (sucrose, ascorbic acid, and biotin). The organoids effectively distinguished between the toxicity levels of substances with and without hepatic toxicity. We demonstrated the potential of hepatic organoids with validated functionalities and genetic characteristics as promising models for toxicity evaluation by analyzing toxicological changes occurring in hepatoxic drug-treated organoids.

6.
Article in English | MEDLINE | ID: mdl-38807565

ABSTRACT

Colloidal nanocrystals (NCs) exhibit significant potential for photovoltaic bioelectronic interfaces because of their solution processability, tunable energy levels, and inorganic nature, lending them chemical stability. Silver bismuth sulfide (AgBiS2) NCs, free from toxic heavy-metal elements (e.g., Cd, Hg, and Pb), particularly offer an exceptional absorption coefficient exceeding 105 cm-1 in the near-infrared (NIR), surpassing many of their inorganic counterparts. Here, we integrated an ultrathin (24 nm) AgBiS2 NC layer into a water-stable photovoltaic bioelectronic device architecture that showed a high capacitive photocurrent of 2.3 mA·cm-2 in artificial cerebrospinal fluid (aCSF) and ionic charges over 10 µC·cm-2 at a low NIR intensity of 0.5 mW·mm-2. The device without encapsulation showed a halftime of 12.5 years under passive accelerated aging test and did not show any toxicity on neurons. Furthermore, patch-clamp electrophysiology on primary hippocampal neurons under whole-cell configuration revealed that the device elicited neuron firing at intensity levels more than an order of magnitude below the established ocular safety limits. These findings point to the potential of AgBiS2 NCs for photovoltaic retinal prostheses.

7.
Emerg Microbes Infect ; : 2362392, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808613

ABSTRACT

Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV) infection, continues to pose significant public health challenges worldwide despite efficient vaccines. The virus is classified into five genotypes, among which genotype V (GV) was not detected for a long period after its initial isolation in 1952, until reports emerged from China and the Republic of Korea (ROK) since 2009. The characteristics of the virus are crucial in estimating its potential epidemiological impact. However, characterization of GV JEVs has so far been limited to two strains: Muar, the original isolate, and XZ0934, isolated in China. Two additional ROK GV JEV isolates, NCCP 43279 and NCCP 43413, are currently available, but their characteristics have not been explored. Our phylogenetic analysis revealed that GV virus sequences from the ROK segregate into two clades. NCCP 43279 and NCCP 43413 belong to different clades and exhibit distinct in vitro phenotypes. NCCP 43279 forms larger plaques but demonstrates inefficient propagation in cell culture compared to NCCP 43413. In vivo, NCCP 43279 induces higher morbidity and mortality in mice than NCCP 43413. Notably, NCCP 43279 shows more severe blood-brain barrier damage, suggesting superior brain invasion capabilities. Consistent with its higher virulence, NCCP 43279 displays more pronounced histopathological and immunopathological outcomes. In conclusion, our study confirms that the two ROK isolates are not only classified into different clades but also exhibit distinct in vitro and in vivo characteristics.

8.
Eur J Cardiothorac Surg ; 65(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38710669

ABSTRACT

OBJECTIVES: The objective of this analysis was to assess the normal haemodynamic performance of contemporary surgical aortic valves at 1 year postimplant in patients undergoing surgical aortic valve replacement for significant valvular dysfunction. By pooling data from 4 multicentre studies, this study will contribute to a better understanding of the effectiveness of surgical aortic valve replacement procedures, aiding clinicians and researchers in making informed decisions regarding valve selection and patient management. METHODS: Echocardiograms were assessed by a single core laboratory. Effective orifice area, dimensionless velocity index, mean aortic gradient, peak aortic velocity and stroke volume were evaluated. RESULTS: The cohort included 2958 patients. Baseline age in the studies ranged from 70.1 ± 9.0 to 83.3 ± 6.4 years, and Society of Thoracic Surgeons risk of mortality was 1.9 ± 0.7 to 7.5 ± 3.4%. Twenty patients who had received a valve model implanted in fewer than 10 cases were excluded. Ten valve models (all tissue valves; n = 2938 patients) were analysed. At 1 year, population mean effective orifice area ranged from 1.46 ± 0.34 to 2.12 ± 0.59 cm2, and dimensionless velocity index, from 0.39 ± 0.07 to 0.56 ± 0.15. The mean gradient ranged from 8.6 ± 3.4 to 16.1 ± 6.2 mmHg with peak aortic velocity of 1.96 ± 0.39 to 2.65 ± 0.47 m/s. Stroke volume was 75.3 ± 19.6 to 89.8 ± 24.3 ml. CONCLUSIONS: This pooled cohort is the largest to date of contemporary surgical aortic valves with echocardiograms analysed by a single core lab. Overall haemodynamic performance at 1 year ranged from good to excellent. These data can serve as a benchmark for other studies and may be useful to evaluate the performance of bioprosthetic surgical valves over time. CLINICAL TRIAL REGISTRATION NUMBER: NCT02088554, NCT02701283, NCT01586910 and NCT01531374.


Subject(s)
Aortic Valve , Bioprosthesis , Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Hemodynamics , Humans , Hemodynamics/physiology , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aged , Female , Male , Aged, 80 and over , Heart Valve Prosthesis Implantation/methods , Echocardiography , Middle Aged , Prosthesis Design
9.
Front Biosci (Landmark Ed) ; 29(5): 194, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38812330

ABSTRACT

BACKGROUNDS: Melanogenesis, regulated by genetic, hormonal, and environmental factors, occurs in melanocytes in the basal layer of the epidermis. Dysregulation of this process can lead to various skin disorders, such as hyperpigmentation and hypopigmentation. Therefore, the present study investigated the effect of ultrasonic-assisted ethanol extract (SHUE) from Sargassum horneri (S. horneri), brown seaweed against melanogenesis in α-melanocyte-stimulating hormone (MSH)-stimulated B16F10 murine melanocytes. METHODS: Firstly, yield and proximate compositional analysis of the samples were conducted. The effect of SHUE on cell viability has been evaluated by using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After that, the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes were examined. Western blot analysis was carried out to investigate the protein expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, the effect of extracellular signal-regulated kinase (ERK) on the melanogenesis process was assessed via Western blotting. RESULTS: As per the analysis, SHUE contained the highest average yield on a dry basis at 28.70 ± 3.21%. The findings showed that SHUE reduced the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes. Additionally, the expression levels of MITF, TRP1, and TRP2 protein were significantly downregulated by SHUE treatment in α-MSH-stimulated B16F10 murine melanocytes. Moreover, SHUE upregulated the phosphorylation of ERK and AKT in α-MSH-stimulated B16F10 murine melanocytes. In addition, experiments conducted using the ERK inhibitor (PD98059) revealed that the activity of SHUE depends on the ERK signaling cascade. CONCLUSION: These results suggest that SHUE has an anti-melanogenic effect and can be used as a material in the formulation of cosmetics related to whitening and lightening.


Subject(s)
Ethanol , Melanins , Melanocytes , Monophenol Monooxygenase , Sargassum , Animals , Sargassum/chemistry , Melanins/biosynthesis , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Melanocytes/drug effects , Melanocytes/metabolism , Mice , Ethanol/chemistry , Microphthalmia-Associated Transcription Factor/metabolism , alpha-MSH/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Melanoma, Experimental/metabolism , Cell Line, Tumor , Intramolecular Oxidoreductases/metabolism
10.
Mol Ther Nucleic Acids ; 35(2): 102174, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38584818

ABSTRACT

Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.

11.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674090

ABSTRACT

Cinnamic acid (CA) was successfully incorporated into Zn-Al layered double hydroxide (LDH) through coprecipitation. The CA moiety was stabilized in the interlayer space through not only electrostatic interaction but also intermolecular π-π interaction. It was noteworthy that the CA arrangement was fairly independent of the charge density of LDH, showing the important role of the layer-CA and CA-CA interactions in molecular stabilization. Computer simulations using the Monte Carlo method as well as analytical approaches including infrared, UV-vis spectroscopy, and differential scanning calorimetry showed the existence of intermolecular interaction. In order to reinforce molecular stabilization, a neutral derivative of CA, cinnamaldehyde (CAD), was additionally incorporated into LDH. It was clearly shown that CAD played a role as a π-π interaction mediator to enhance the stabilization of CA. The time-dependent release of CA from LDH was first governed by the layer charge density of LDH; however, the existence of CAD provided additional stabilization to the CA arrangement to slow down the release kinetics.


Subject(s)
Acrolein/analogs & derivatives , Cinnamates , Delayed-Action Preparations , Hydroxides , Cinnamates/chemistry , Hydroxides/chemistry , Delayed-Action Preparations/chemistry , Acrolein/chemistry , Kinetics , Monte Carlo Method , Calorimetry, Differential Scanning
12.
Pathology ; 56(4): 528-539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609782

ABSTRACT

This study explored the relationship between faecal microbiota distribution and local or systemic immune response in patients with colorectal cancer (CRC). The study population included 114 surgically treated CRC patients. Faeces were analysed using 16S rRNA gene sequencing. The immune score in tumour microenvironment was evaluated using CD3 and CD8 immunohistochemistry. Genetic alterations, microsatellite instability status and five systemic inflammatory markers were also analysed. Thirty of 114 (26.3%) CRC patients were categorised as the 'immune type' with a high density of T-cells. The immune type CRC cases showed lower angiolymphatic invasion and longer overall survival. Of the 123 selected bacterial species, Bacteroides fragilis and Collinsella aerofaciens were prevalent in immune CRC cases, whereas Odoribacter splanchnicus and Phascolarctobacterium succinatutens were prevalent in non-immune CRC patients. Bacteroides fragilis was associated with shorter disease free survival in univariable and multivariable survival analyses. Regarding systemic immunity, a high prevalence of C. aerofaciens was associated with a high modified Glasgow prognostic score. This study revealed a potential relationship among the gut microbiome, immune microenvironment, and disease progression in patients with CRC. Our findings suggest that abundant B. fragilis in patients with CRC is associated with a 'cold immune' tumour microenvironment.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Tumor Microenvironment , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/surgery , Tumor Microenvironment/immunology , Male , Female , Middle Aged , Aged , Feces/microbiology , Adult , Aged, 80 and over , RNA, Ribosomal, 16S/genetics , Prognosis , Bacteroides fragilis/immunology
13.
Am J Cardiol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38641189

ABSTRACT

There are limited data from randomized controlled trials assessing the impact of transcatheter aortic valve replacement (TAVR) or surgery in women with aortic stenosis and small aortic annuli. We evaluated 2-year clinical and hemodynamic outcomes after aortic valve replacement to understand acute valve performance and early and midterm clinical outcomes. This post hoc analysis pooled women enrolled in the randomized, prospective, multicenter Evolut Low Risk and SURTAVI intermediate risk trials. Women with severe aortic stenosis at low or intermediate surgical risk who had a computed tomography-measured annular perimeter of ≤72.3 mm were included and underwent self-expanding, supra-annular TAVR or surgery. The primary end point was 2-year all-cause mortality or disabling stroke rate. The study included 620 women (323 TAVR, 297 surgery) with a mean age of 78 years. At 2 years, the all-cause mortality or disabling stroke was 6.5% for TAVR and 8.0% for surgery, p = 0.47. Pacemaker rates were 20.0% for TAVR and 8.3% for surgery, p <0.001. The mean effective orifice area at 2 years was 1.9 ± 0.5 cm2 for TAVR and 1.6 ± 0.5 cm2 for surgery and the mean gradient was 8.0 ± 4.1 versus 12.7 ± 6.0 mm Hg, respectively (both p <0.001). Moderate or severe patient-prothesis mismatch at discharge occurred in 10.9% of patients who underwent TAVR and 33.2% of patients who underwent surgery, p <0.001. In conclusion, in women with small annuli, the clinical outcomes to 2 years were similar between self-expanding, supra-annular TAVR and surgery, with better hemodynamics in the TAVR group and fewer pacemakers in the surgical group.

14.
Sci Rep ; 14(1): 9876, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38684776

ABSTRACT

The purpose of this study is to investigate the association between handgrip strength (HGS) and health-related quality of life (HRQoL), demonstrating HGS as an effective indicator for evaluating HRQoL of patients with cancer. Analyzing 1657 Korean adult cancer patients (644 males, 1013 females) aged ≥ 20 years from the Korea National Health and Nutrition Examination Survey (2014-2019), HGS was standardized based on body mass index and categorized by sex. HRQoL was assessed using the Euro Quality of Life-5-Dimension 3-Level version (EQ-5D-3L) Index. Lower relative HGS was associated with decreased HRQoL in female patients, while no significant association was found in male patients. The lowest quartile of relative HGS exhibited a 2.5-fold decrease in HRQoL compared to the highest quartile (OR 2.50, 95% CI 1.59-3.95, p < 0.001). Both male and female patients with cancer were affected by age, subjective health perception, and stress recognition regarding HRQoL. This study suggests that HGS may be associated with the HRQoL of female patients with cancer, emphasizing that the HGS measurement can be effectively utilized as a pivotal tool for evaluating HRQoL in female patients with cancer.


Subject(s)
Hand Strength , Neoplasms , Quality of Life , Humans , Female , Male , Hand Strength/physiology , Neoplasms/physiopathology , Neoplasms/psychology , Middle Aged , Adult , Republic of Korea , Aged , Sex Factors , Nutrition Surveys , Young Adult , Sex Characteristics
15.
Nat Commun ; 15(1): 3557, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670944

ABSTRACT

Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.


Subject(s)
Asian People , Colorectal Neoplasms , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , White People , Humans , Colorectal Neoplasms/genetics , Asian People/genetics , White People/genetics , Exome Sequencing , Case-Control Studies , Transcriptome , Chromosome Mapping , Male , Female , East Asian People
16.
Int J Stem Cells ; 17(2): 194-203, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38664993

ABSTRACT

Evaluating cell metabolism is crucial during pluripotent stem cell (PSC) differentiation and somatic cell reprogramming as it affects cell fate. As cultured stem cells are heterogeneous, a comparative analysis of relative metabolism using existing metabolic analysis methods is difficult, resulting in inaccuracies. In this study, we measured human PSC basal metabolic levels using a Seahorse analyzer. We used fibroblasts, human induced PSCs, and human embryonic stem cells to monitor changes in basal metabolic levels according to cell number and determine the number of cells suitable for analysis. We evaluated normalization methods using glucose and selected the most suitable for the metabolic analysis of heterogeneous PSCs during the reprogramming stage. The response of fibroblasts to glucose increased with starvation time, with oxygen consumption rate and extracellular acidification rate responding most effectively to glucose 4 hours after starvation and declining after 5 hours of starvation. Fibroblasts and PSCs achieved appropriate responses to glucose without damaging their metabolism 2∼4 and 2∼3 hours after starvation, respectively. We developed a novel method for comparing basal metabolic rates of fibroblasts and PSCs, focusing on quantitative analysis of glycolysis and oxidative phosphorylation using glucose without enzyme inhibitors. This protocol enables efficient comparison of energy metabolism among cell types, including undifferentiated PSCs, differentiated cells, and cells undergoing cellular reprogramming, and addresses critical issues, such as differences in basal metabolic levels and sensitivity to normalization, providing valuable insights into cellular energetics.

17.
PLoS One ; 19(4): e0301121, 2024.
Article in English | MEDLINE | ID: mdl-38635494

ABSTRACT

To prevent obesity and diabetes environmental interventions such as eliminating food deserts, restricting proliferation of food swamps, and improving park access are essential. In the United States, however, studies that examine the food and park access relationship with obesity and diabetes using both global and local regression are lacking. To guide county, state, and federal policy in combating obesity and diabetes, there is a need for cross-scale analyses to identify that relationship at national and local levels. This study applied spatial regression and geographically weighted regression to the 3,108 counties in the contiguous United States. Global regression show food deserts exposure and density of fast-food restaurants have non-significant association with obesity and diabetes while park access has a significant inverse association with both diseases. Geographically weighted regression that takes into account spatial heterogeneity shows that, among southern states that show high prevalence of obesity and diabetes, Alabama and Mississippi stand out as having opportunity to improve park access. Results suggest food deserts exposure are positively associated with obesity and diabetes in counties close to Alabama, Georgia, and Tennessee while density of fast-food restaurants show positive association with two diseases in counties of western New York and northwestern Pennsylvania. These findings will help policymakers and public health agencies in determining which geographic areas need to be prioritized when implementing public interventions such as promoting healthy food access, limiting unhealthy food options, and increasing park access.


Subject(s)
Diabetes Mellitus , Restaurants , Humans , United States , Food Deserts , Fast Foods , Obesity/epidemiology , Obesity/prevention & control , Diabetes Mellitus/epidemiology , Recreation , Residence Characteristics
18.
Br J Nutr ; : 1-10, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38508770

ABSTRACT

The importance of Se in human health has received much attention due to its antioxidant properties when it is consumed at an appropriate level. However, the existing evidence is limited to obtain an effective conclusion for colorectal cancer (CRC). Notably, an adequate intake of Se was reported for Koreans. Furthermore, cytokine secretion and immune function may be affected by dietary Se. Our study aimed to explore whether Se potentially reduces CRC risk and whether the IL10 rs1800871 polymorphism has an effect on this association. We designed a case-control study with 1420 cases and 2840 controls. A semi-quantitative FFQ was used to obtain information on Se intake. We determined IL10 rs1800871 through genetic analysis. Different models were developed to explore Se intake related to CRC risk by calculating OR and 95 % CI using unconditional logistic regression. A reduced risk of CRC was found as Se intake increased, with an OR (95 % CI) of 0·44 (0·35, 0·55) (Pfor trend < 0·001). However, this association seems to be allele-specific and only present among risk variant allele carriers (GA/GG) with a significant interaction between dietary Se and IL10 rs1800871 (Pfor interaction = 0·043). We emphasised that a reduction in CRC risk is associated with appropriate Se intake. However, the IL10 rs1800871 polymorphism has an impact on this reduction, with a greater effect on variant allele carriers. These findings suggest the importance of considering an individual's genetic characteristics when developing nutritional strategies for CRC prevention.

19.
Curr Dev Nutr ; 8(3): 102127, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38523829

ABSTRACT

Background: Glucose is a main source of energy for tumor cells. Thus, a low-carbohydrate diet (LCD) is thought to make a significant contribution to cancer prevention. In addition, LCD and HECT domain E3 ubiquitin protein ligase 4 (HECTD4) gene may be related to insulin resistance. Objectives: We explored whether LCD score and HECTD4 rs11066280 are etiological factors for colorectal cancer (CRC) and whether LCD score interacts with HECTD4 rs11066280 to modify CRC risk. Methods: We included 1457 controls and 1062 cases in a case-control study. The LCD score was computed based on the proportion of energy obtained from carbohydrate, protein, and fat, as determined by a semiquantitative food frequency questionnaire. We used unconditional logistic regression models to explore the association of HECTD4 with CRC prevention and interaction of LCD score and HECTD4 polymorphism with CRC preventability. Results: Individuals with AA/AT genotypes who carried a minor allele (A) of HECTD4 rs11066280 exhibited a decreased CRC risk [odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.62, 0.91]. In addition, a protective effect of high LCD score against CRC development was identified (OR = 0.52, 95% CI: 0.40, 0.68, P for trend <0.001). However, the effect of LCD depended on individual's genetic background, which appears only in participants with TT genotype of HECTD4 rs11066280 [OR = 0.49 (0.36-0.68), P interaction = 0.044]. Conclusions: Our findings suggest a protective effect of LCD and a minor allele of HECTD4 rs11066280 against CRC development. In addition, we provide an understanding of the interaction effect of LCD and HECTD4 rs11066280 on CRC, which may be helpful for establishing diet plans regarding cancer prevention.

20.
Lancet ; 403(10436): 1590-1602, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38554727

ABSTRACT

Valvular heart disease (VHD) is becoming more prevalent in an ageing population, leading to challenges in diagnosis and management. This two-part Series offers a comprehensive review of changing concepts in VHD, covering diagnosis, intervention timing, novel management strategies, and the current state of research. The first paper highlights the remarkable progress made in imaging and transcatheter techniques, effectively addressing the treatment paradox wherein populations at the highest risk of VHD often receive the least treatment. These advances have attracted the attention of clinicians, researchers, engineers, device manufacturers, and investors, leading to the exploration and proposal of treatment approaches grounded in pathophysiology and multidisciplinary strategies for VHD management. This Series paper focuses on innovations involving computational, pharmacological, and bioengineering approaches that are transforming the diagnosis and management of patients with VHD. Artificial intelligence and digital methods are enhancing screening, diagnosis, and planning procedures, and the integration of imaging and clinical data is improving the classification of VHD severity. The emergence of artificial intelligence techniques, including so-called digital twins-eg, computer-generated replicas of the heart-is aiding the development of new strategies for enhanced risk stratification, prognostication, and individualised therapeutic targeting. Various new molecular targets and novel pharmacological strategies are being developed, including multiomics-ie, analytical methods used to integrate complex biological big data to find novel pathways to halt the progression of VHD. In addition, efforts have been undertaken to engineer heart valve tissue and provide a living valve conduit capable of growth and biological integration. Overall, these advances emphasise the importance of early detection, personalised management, and cutting-edge interventions to optimise outcomes amid the evolving landscape of VHD. Although several challenges must be overcome, these breakthroughs represent opportunities to advance patient-centred investigations.


Subject(s)
Artificial Intelligence , Heart Valve Diseases , Humans , Heart Valve Diseases/diagnosis , Heart Valve Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...