Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(3): e10843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505179

ABSTRACT

The size and distribution of home ranges reflect how individuals within a population use, defend, and share space and resources, and may thus be an important predictor of population-level dynamics. Eruptive species, such as the house mouse in Australian grain-growing regions, are an ideal species in which to investigate variations in space use and home range overlap between stable and outbreaking populations. In this study, we use spatially explicit capture-recapture models to explore if space use and home range overlap among female mice could serve as indicators of changes in population density leading into summer. Additionally, we assess the sensitivity of space use and home range estimates to reduced recapture rates. Our analysis did not reveal variations in the spring spatial organisation of female mice based on existing capture-mark-recapture data. However, our study highlights the need to balance monitoring efforts within regions, emphasising the importance of exploring studies that can improve spatial recaptures by optimising trapping efforts. This is particularly important in Australian agricultural systems, where varying farm management practices may drive differences in population dynamics.

2.
PLoS One ; 18(8): e0288701, 2023.
Article in English | MEDLINE | ID: mdl-37590245

ABSTRACT

The management of invasive species has been greatly enhanced by population genetic analyses of multilocus single-nucleotide polymorphism (SNP) datasets that provide critical information regarding pest population structure, invasion pathways, and reproductive biology. For many applications there is a need for protocols that offer rapid, robust and efficient genotyping on the order of hundreds to thousands of SNPs, that can be tailored to specific study populations and that are scalable for long-term monitoring schemes. Despite its status as a model laboratory species, there are few existing resources for studying wild populations of house mice (Mus musculus spp.) that strike this balance between data density and laboratory efficiency. Here we evaluate the utility of a custom targeted capture genotyping-by-sequencing approach to support research on plaguing house mouse populations in Australia. This approach utilizes 3,651 hybridization capture probes targeting genome-wide SNPs identified from a sample of mice collected in grain-producing regions of southeastern Australia genotyped using a commercially available microarray platform. To assess performance of the custom panel, we genotyped wild caught mice (N = 320) from two adjoining farms and demonstrate the ability to correctly assign individuals to source populations with high confidence (mean >95%), as well as robust kinship inference within sites. We discuss these results in the context of proposed applications for future genetic monitoring of house mice in Australia.


Subject(s)
Polymorphism, Single Nucleotide , Rodentia , Animals , Mice , Genotype , Australia , Culture
3.
Proc Natl Acad Sci U S A ; 119(46): e2213308119, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36346842

ABSTRACT

Invasive rodents are a major cause of environmental damage and biodiversity loss, particularly on islands. Unlike insects, genetic biocontrol strategies including population-suppressing gene drives with biased inheritance have not been developed in mice. Here, we demonstrate a gene drive strategy (tCRISPR) that leverages super-Mendelian transmission of the t haplotype to spread inactivating mutations in a haplosufficient female fertility gene (Prl). Using spatially explicit individual-based in silico modeling, we show that tCRISPR can eradicate island populations under a range of realistic field-based parameter values. We also engineer transgenic tCRISPR mice that, crucially, exhibit biased transmission of the modified t haplotype and Prl mutations at levels our modeling predicts would be sufficient for eradication. This is an example of a feasible gene drive system for invasive alien rodent population control.


Subject(s)
Biodiversity , Gene Drive Technology , Mice , Female , Animals , Rodentia , Genetics, Population , Clustered Regularly Interspaced Short Palindromic Repeats
4.
J Evol Biol ; 35(1): 109-123, 2022 01.
Article in English | MEDLINE | ID: mdl-34668602

ABSTRACT

Sexual signalling traits are often observed to diverge rapidly among populations, thereby playing a potentially key early role in the evolution of reproductive isolation. While often assumed to reflect divergent sexual selection among populations, patterns of sexual trait diversification might sometimes be biased along axes of standing additive genetic variation and covariation among trait components. Additionally, theory predicts that environmentally induced phenotypic variation might facilitate rapid trait evolution, suggesting that patterns of divergence between populations should mirror phenotypic plasticity within populations. Here, we evaluate the concordance between observed axes of multivariate sexual trait divergence and predicted divergence based on (1) interpopulation variation in sexual selection, (2) additive genetic variances and (3) temperature-related phenotypic plasticity in male courtship song among geographically isolated populations of the Hawaiian swordtail cricket, Laupala cerasina, which exhibit sexual isolation due acoustic signalling traits. The major axis of multivariate divergence, dmax , accounted for 76% of variation among population male song trait means and was moderately correlated with interpopulation differences in directional sexual selection based on female preferences. However, the majority of additive genetic variance was largely oriented away from the direction of divergence, suggesting that standing genetic variation may not play a dominant role in the patterning of signal divergence. In contrast, the axis of phenotypic plasticity strongly mirrored patterns of interpopulation phenotypic divergence, which is consistent with a role for temperature-related plasticity in facilitating instead of inhibiting male song evolution and sexual isolation in these incipient species. We propose potential mechanisms by which sexual selection might interact with phenotypic plasticity to facilitate the rapid acoustic diversification observed in this species and clade.


Subject(s)
Animal Communication , Gryllidae , Adaptation, Physiological , Animals , Biological Evolution , Female , Genetic Variation , Gryllidae/genetics , Male , Phenotype , Selection, Genetic
5.
Evol Appl ; 14(5): 1421-1435, 2021 May.
Article in English | MEDLINE | ID: mdl-34025776

ABSTRACT

Introduced rodent populations pose significant threats worldwide, with particularly severe impacts on islands. Advancements in genome editing have motivated interest in synthetic gene drives that could potentially provide efficient and localized suppression of invasive rodent populations. Application of such technologies will require rigorous population genomic surveys to evaluate population connectivity, taxonomic identification, and to inform design of gene drive localization mechanisms. One proposed approach leverages the predicted shifts in genetic variation that accompany island colonization, wherein founder effects, genetic drift, and island-specific selection are expected to result in locally fixed alleles (LFA) that are variable in neighboring nontarget populations. Engineering of guide RNAs that target LFA may thus yield gene drives that spread within invasive island populations, but would have limited impacts on nontarget populations in the event of an escape. Here we used pooled whole-genome sequencing of invasive mouse (Mus musculus) populations on four islands along with paired putative source populations to test genetic predictions of island colonization and characterize locally fixed Cas9 genomic targets. Patterns of variation across the genome reflected marked reductions in allelic diversity in island populations and moderate to high degrees of differentiation from nearby source populations despite relatively recent colonization. Locally fixed Cas9 sites in female fertility genes were observed in all island populations, including a small number with multiplexing potential. In practice, rigorous sampling of presumptive LFA will be essential to fully assess risk of resistance alleles. These results should serve to guide development of improved, spatially limited gene drive design in future applications.

6.
Article in English | MEDLINE | ID: mdl-32523938

ABSTRACT

Invasive species are increasingly affecting agriculture, food, fisheries, and forestry resources throughout the world. As a result of global trade, invasive species are often introduced into new environments where they become established and cause harm to human health, agriculture, and the environment. Prevention of new introductions is a high priority for addressing the harm caused by invasive species, but unfortunately efforts to prevent new introductions do not address the economic harm that is presently manifested where invasive species have already become established. Genetic biocontrol can be defined as the release of organisms with genetic methods designed to disrupt the reproduction of invasive populations. While these methods offer the potential to control or even eradicate invasive species, there is a need to ensure that genetic biocontrol methods can be deployed in a way that minimizes potential harm to the environment. This review provides an overview of the state of genetic biocontrol, focusing on several approaches that were the subject of presentations at the Genetic Biocontrol for Invasive Species Workshop in Tarragona, Spain, March 31st, 2019, a workshop sponsored by the OECD's Co-operative Research Program on Biological Resource Management for Sustainable Agricultural Systems. The review considers four different approaches to genetic biocontrol for invasive species; sterile-release, YY Males, Trojan Female Technique, and gene drive. The different approaches will be compared with respect to the efficiency each affords as a genetic biocontrol tool, the practical utility and cost/benefits associated with implementation of the approach, and the regulatory considerations that will need to be addressed for each. The opinions expressed and arguments employed in this publication are the sole responsibility of the authors and do not necessarily reflect those of the OECD or of the governments of its Member countries.

7.
Sci Rep ; 9(1): 15821, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676762

ABSTRACT

Invasive species pose a major threat to biodiversity on islands. While successes have been achieved using traditional removal methods, such as toxicants aimed at rodents, these approaches have limitations and various off-target effects on island ecosystems. Gene drive technologies designed to eliminate a population provide an alternative approach, but the potential for drive-bearing individuals to escape from the target release area and impact populations elsewhere is a major concern. Here we propose the "Locally Fixed Alleles" approach as a novel means for localizing elimination by a drive to an island population that exhibits significant genetic isolation from neighboring populations. Our approach is based on the assumption that in small island populations of rodents, genetic drift will lead to alleles at multiple genomic loci becoming fixed. In contrast, multiple alleles are likely to be maintained in larger populations on mainlands. Utilizing the high degree of genetic specificity achievable using homing drives, for example based on the CRISPR/Cas9 system, our approach aims at employing one or more locally fixed alleles as the target for a gene drive on a particular island. Using mathematical modeling, we explore the feasibility of this approach and the degree of localization that can be achieved. We show that across a wide range of parameter values, escape of the drive to a neighboring population in which the target allele is not fixed will at most lead to modest transient suppression of the non-target population. While the main focus of this paper is on elimination of a rodent pest from an island, we also discuss the utility of the locally fixed allele approach for the goals of population suppression or population replacement. Our analysis also provides a threshold condition for the ability of a gene drive to invade a partially resistant population.


Subject(s)
Alleles , Biodiversity , Animals , Islands
8.
Proc Biol Sci ; 286(1914): 20191606, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31690240

ABSTRACT

Invasive rodents impact biodiversity, human health and food security worldwide. The biodiversity impacts are particularly significant on islands, which are the primary sites of vertebrate extinctions and where we are reaching the limits of current control technologies. Gene drives may represent an effective approach to this challenge, but knowledge gaps remain in a number of areas. This paper is focused on what is currently known about natural and developing synthetic gene drive systems in mice, some key areas where key knowledge gaps exist, findings in a variety of disciplines relevant to those gaps and a brief consideration of how engagement at the regulatory, stakeholder and community levels can accompany and contribute to this effort. Our primary species focus is the house mouse, Mus musculus, as a genetic model system that is also an important invasive pest. Our primary application focus is the development of gene drive systems intended to reduce reproduction and potentially eliminate invasive rodents from islands. Gene drive technologies in rodents have the potential to produce significant benefits for biodiversity conservation, human health and food security. A broad-based, multidisciplinary approach is necessary to assess this potential in a transparent, effective and responsible manner.


Subject(s)
Conservation of Natural Resources/methods , Gene Drive Technology , Rodentia , Animals , Biodiversity , Introduced Species , Islands , Reproduction
9.
Proc Biol Sci ; 286(1912): 20191479, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31594503

ABSTRACT

When the same phenotype evolves repeatedly, we can explore the predictability of genetic changes underlying phenotypic evolution. Theory suggests that genetic parallelism is less likely when phenotypic changes are governed by many small-effect loci compared to few of major effect, because different combinations of genetic changes can result in the same quantitative outcome. However, some genetic trajectories might be favoured over others, making a shared genetic basis to repeated polygenic evolution more likely. To examine this, we studied the genetics of parallel male mating song evolution in the Hawaiian cricket Laupala. We compared quantitative trait loci (QTL) underlying song divergence in three species pairs varying in phenotypic distance. We tested whether replicated song divergence between species involves the same QTL and whether the likelihood of QTL sharing is related to QTL effect size. Contrary to theoretical predictions, we find substantial parallelism in polygenic genetic architectures underlying repeated song divergence. QTL overlapped more frequently than expected based on simulated QTL analyses. Interestingly, QTL effect size did not predict QTL sharing, but did correlate with magnitude of phenotypic divergence. We highlight potential mechanisms driving these constraints on cricket song evolution and discuss a scenario that consolidates empirical quantitative genetic observations with micro-mutational theory.


Subject(s)
Biological Evolution , Gryllidae/physiology , Animal Communication , Animals , Genetic Speciation , Genomics , Gryllidae/genetics , Hawaii , Male , Phenotype , Quantitative Trait Loci
10.
Evol Appl ; 12(8): 1661-1677, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31462921

ABSTRACT

Understanding the genetic underpinning of adaptive divergence among populations is a key goal of evolutionary biology and conservation. Gunnison sage-grouse (Centrocercus minimus) is a sagebrush obligate species with a constricted range consisting of seven discrete populations, each with distinctly different habitat and climatic conditions. Though geographically close, populations have low levels of natural gene flow resulting in relatively high levels of differentiation. Here, we use 15,033 SNP loci in genomic outlier analyses, genotype-environment association analyses, and gene ontology enrichment tests to examine patterns of putatively adaptive genetic differentiation in an avian species of conservation concern. We found 411 loci within 5 kbp of 289 putative genes associated with biological functions or pathways that were overrepresented in the assemblage of outlier SNPs. The identified gene set was enriched for cytochrome P450 gene family members (CYP4V2, CYP2R1, CYP2C23B, CYP4B1) and could impact metabolism of plant secondary metabolites, a critical challenge for sagebrush obligates. Additionally, the gene set was also enriched with members potentially involved in antiviral response (DEAD box helicase gene family and SETX). Our results provide a first look at local adaption for isolated populations of a single species and suggest adaptive divergence in multiple metabolic and biochemical pathways may be occurring. This information can be useful in managing this species of conservation concern, for example, to identify unique populations to conserve, avoid translocation or release of individuals that may swamp locally adapted genetic diversity, or guide habitat restoration efforts.

11.
Genome Biol Evol ; 11(7): 2023-2034, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31135036

ABSTRACT

Sage-grouse are two closely related iconic species of the North American West, with historically broad distributions across sagebrush-steppe habitat. Both species are dietary specialists on sagebrush during winter, with presumed adaptations to tolerate the high concentrations of toxic secondary metabolites that function as plant chemical defenses. Marked range contraction and declining population sizes since European settlement have motivated efforts to identify distinct population genetic variation, particularly that which might be associated with local genetic adaptation and dietary specialization of sage-grouse. We assembled a reference genome and performed whole-genome sequencing across sage-grouse from six populations, encompassing both species and including several populations on the periphery of the species ranges. Population genomic analyses reaffirmed genome-wide differentiation between greater and Gunnison sage-grouse, revealed pronounced intraspecific population structure, and highlighted important differentiation of a small isolated population of greater sage-grouse in the northwest of the range. Patterns of genome-wide differentiation were largely consistent with a hypothesized role of genetic drift due to limited gene flow among populations. Inferred ancient population demography suggested persistent declines in effective population sizes that have likely contributed to differentiation within and among species. Several genomic regions with single-nucleotide polymorphisms exhibiting extreme population differentiation were associated with candidate genes linked to metabolism of xenobiotic compounds. In vitro activity of enzymes isolated from sage-grouse livers supported a role for these genes in detoxification of sagebrush, suggesting that the observed interpopulation variation may underlie important local dietary adaptations, warranting close consideration for conservation strategies that link sage-grouse to the chemistry of local sagebrush.


Subject(s)
Artemisia/metabolism , Genomics/methods , Animals , Artemisia/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Ecosystem
12.
Genes (Basel) ; 9(7)2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29996514

ABSTRACT

Mating behavior divergence can make significant contributions to reproductive isolation and speciation in various biogeographic contexts. However, whether the genetic architecture underlying mating behavior divergence is related to the biogeographic history and the tempo and mode of speciation remains poorly understood. Here, we use quantitative trait locus (QTL) mapping to infer the number, distribution, and effect size of mating song rhythm variations in the crickets Laupala eukolea and Laupala cerasina, which occur on different islands (Maui and Hawaii). We then compare these results with a similar study of an independently evolving species pair that diverged within the same island. Finally, we annotate the L. cerasina transcriptome and test whether the QTL fall in functionally enriched genomic regions. We document a polygenic architecture behind the song rhythm divergence in the inter-island species pair that is remarkably similar to that previously found for an intra-island species pair in the same genus. Importantly, the QTL regions were significantly enriched for potential homologs of the genes involved in pathways that may be modulating the cricket song rhythm. These clusters of loci could constrain the spatial genomic distribution of the genetic variation underlying the cricket song variation and harbor several candidate genes that merit further study.

13.
Genetics ; 209(4): 1329-1344, 2018 08.
Article in English | MEDLINE | ID: mdl-29875253

ABSTRACT

Phenotypic evolution and speciation depend on recombination in many ways. Within populations, recombination can promote adaptation by bringing together favorable mutations and decoupling beneficial and deleterious alleles. As populations diverge, crossing over can give rise to maladapted recombinants and impede or reverse diversification. Suppressed recombination due to genomic rearrangements, modifier alleles, and intrinsic chromosomal properties may offer a shield against maladaptive gene flow eroding coadapted gene complexes. Both theoretical and empirical results support this relationship. However, little is known about this relationship in the context of behavioral isolation, where coevolving signals and preferences are the major hybridization barrier. Here we examine the genomic architecture of recently diverged, sexually isolated Hawaiian swordtail crickets (Laupala). We assemble a de novo genome and generate three dense linkage maps from interspecies crosses. In line with expectations based on the species' recent divergence and successful interbreeding in the laboratory, the linkage maps are highly collinear and show no evidence for large-scale chromosomal rearrangements. Next, the maps were used to anchor the assembly to pseudomolecules and estimate recombination rates across the genome to test the hypothesis that loci involved in behavioral isolation (song and preference divergence) are in regions of low interspecific recombination. Contrary to our expectations, the genomic region where a male song and female preference QTL colocalize is not associated with particularly low recombination rates. This study provides important novel genomic resources for an emerging evolutionary genetics model system and suggests that trait-preference coevolution is not necessarily facilitated by locally suppressed recombination.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Insect/genetics , Gryllidae/radiation effects , Sequence Analysis, DNA/methods , Adaptation, Biological , Animals , Female , Gene Flow , Genetic Linkage , Genetic Speciation , Gryllidae/classification , Gryllidae/genetics , Male , Mutation , Phenotype , Quantitative Trait Loci , Recombination, Genetic/radiation effects
14.
Proc Biol Sci ; 280(1761): 20130482, 2013 Jun 22.
Article in English | MEDLINE | ID: mdl-23760640

ABSTRACT

Estimating the fitness surface of rapidly evolving secondary sexual traits can elucidate the origins of sexual isolation and thus speciation. Evidence suggests that sexual selection is highly complex in nature, often acting on multivariate sexual characters that sometimes include non-heritable components of variation, thus presenting a challenge for predicting patterns of sexual trait evolution. Laupala crickets have undergone an explosive species radiation marked by divergence in male courtship song and associated female preferences, yet patterns of sexual selection that might explain this diversification remain unknown. We used female phonotaxis trials to estimate the fitness surface for acoustic characters within one population of Laupala cerasina, a species with marked geographical variation in male song and female preferences. Results suggested significant directional sexual selection on three major song traits, while canonical rotation of the matrix of nonlinear selection coefficients (γ) revealed the presence of significant convex (stabilizing) sexual selection along combinations of characters. Analysis of song variation within and among males indicated significantly higher repeatability along the canonical axis of greatest stabilizing selection than along the axis of greatest linear selection. These results are largely consistent with patterns of song divergence that characterize speciation and suggest that different song characters have the potential to indicate distinct information to females during courtship.


Subject(s)
Genetic Speciation , Gryllidae/physiology , Mating Preference, Animal , Animal Communication , Animals , Biological Evolution , Female , Gryllidae/genetics , Hawaii , Male , Phenotype , Regression Analysis , Selection, Genetic , Sexual Behavior, Animal , Vocalization, Animal
15.
Mol Ecol ; 20(13): 2657-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21834140

ABSTRACT

Social monogamy is nearly ubiquitous across avian taxa,but evidence from a proliferation of studies utilizing molecular paternity analysis suggests that sexual monogamy is the rare exception rather than the rule (Griffith et al. 2002). Efforts to explain the prevalence of extra-pair paternity (EPP) have largely focused on the potential fitness benefits for offspring genetic quality, as females are less likely to benefit directly from seeking extra-pair mates. In particular, there has been considerable interest in the degree to which EPP may represent an adaptive female strategy to avoid inbreeding (or outbreeding)depression when paired with a highly related (or unrelated)social mate (Kempenaers 2007). Others have argued that, because relatives share many genes identical by descent,females might increase their own inclusive fitness by providing additional breeding opportunities to genetically related males (Waser et al. 1986; Kokko & Ots 2006). Thus, in the absence of significant inbreeding depression, pursuing EPP with relatives should be favoured by kin selection, although there exist few unambiguous empirical examples of such preferences in the literature. In this issue of Molecular Ecology, Wang &Lu (2011) present an analysis of mating patterns with respect to genetic relatedness of social and extra-pair partners in the ground tit (Parus humilis), a facultative cooperative breeder in which socially monogamous pairs occasionally form cooperative groups with unpaired helper males (Fig. 1). Consistent with the predictions of the kin-selection hypothesis, females in both bi-parental and cooperative groups preferentially engaged in extra-pair matings with relatives, irrespective of relatedness to their social mates, and while suffering no apparent costs of inbreeding depression in their progeny. These finding shave several exciting implications for our understanding of avian mating system diversity and the evolution of cooperative breeding.


Subject(s)
Passeriformes/physiology , Sexual Behavior, Animal/physiology , Animals , Female , Male
16.
Am Nat ; 176(3): E80-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20608873

ABSTRACT

The social environment is a critical determinant of fitness and, in many taxa, is shaped by an individual's behavioral discrimination among social contexts, suggesting that animals can actively influence the selection they experience. In competition to attract females, males may modify sexual selection by choosing social environments in which they are more attractive relative to rivals. Across the population, such behaviors should influence sexual selection patterns by altering the relationship between male mating success and sexual ornament elaboration. Here we use network analysis to examine patterns of male social behavior in relation to plumage ornamentation and mating success in a free-living population of house finches. During the nonbreeding season, less elaborate males changed associations with distinct social groups more frequently, compared to more elaborate males that showed greater fidelity to a single social group. By the onset of pair formation, socially labile males effectively increased their attractiveness relative to other males in the same flocks. Consequently, males that frequently moved between social groups had greater pairing success than less social individuals with equivalent sexual ornamentation. We discuss these results in relation to conditional mating tactics and the role of social behavior in evolutionary change by sexual selection.


Subject(s)
Finches/physiology , Sex Characteristics , Social Support , Animals , Biological Evolution , Female , Male , Mating Preference, Animal , Seasons
17.
Mol Ecol Resour ; 9(3): 1029-31, 2009 May.
Article in English | MEDLINE | ID: mdl-21564828

ABSTRACT

The house finch (Carpodacus mexicanus) has emerged recently as a model species in studies of sexual selection, reproductive physiology, population genetics, and epizootic disease ecology. Here we describe 17 highly polymorphic microsatellite loci for this species. In a sample of 36 individuals, we observed an average of 16 alleles per locus and heterozygosity ranged from 0.61 to 0.97. One locus showed significant deviation from Hardy-Weinberg proportions, but no significant gametic disequilibrium was observed among any of the loci. Amplification by polymerase chain reaction was optimized under similar parameters across loci, thereby facilitating multiplexing and rapid multilocus genotyping.

18.
Evolution ; 62(8): 1951-64, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18507745

ABSTRACT

Divergent selection on traits involved in both local adaptation and the production of mating signals can strongly facilitate population differentiation. Because of its links to foraging morphologies and cultural inheritance song of birds can contribute particularly strongly to maintenance of local adaptations. In two adjacent habitats--native Sonoran desert and urban areas--house finches (Carpodacus mexicanus) forage on seeds that are highly distinct in size and shell hardness and require different bite forces and bill morphologies. Here, we first document strong and habitat-specific natural selection on bill traits linked to bite force and find adaptive modifications of bite force and bill morphology and associated divergence in courtship song between the two habitats. Second, we investigate the developmental basis of this divergence and find that early ontogenetic tissue transformation in bill, but not skeletal traits, is accelerated in the urban population and that the mandibular primordia of the large-beaked urban finches express bone morphogenetic proteins (BMP) earlier and at higher level than those of the desert finches. Further, we show that despite being geographically adjacent, urban and desert populations are nevertheless genetically distinct corroborating findings of early developmental divergence between them. Taken together, these results suggest that divergent selection on function and development of traits involved in production of mating signals, in combination with localized learning of such signals, can be very effective at maintaining local adaptations, even at small spatial scales and in highly mobile animals.


Subject(s)
Biological Evolution , Finches/physiology , Models, Genetic , Selection, Genetic , Animals , Beak/anatomy & histology , Bone Morphogenetic Proteins/metabolism , Bone and Bones/metabolism , Ecosystem , Environment , Finches/genetics , Genetic Variation , Geography , Models, Biological , Species Specificity
19.
BMC Evol Biol ; 8: 3, 2008 Jan 09.
Article in English | MEDLINE | ID: mdl-18182118

ABSTRACT

BACKGROUND: The origin of complex adaptations is one of the most controversial questions in biology. Environmental induction of novel phenotypes, where phenotypic retention of adaptive developmental variation is enabled by organismal complexity and homeostasis, can be a starting point in the evolution of some adaptations, but empirical examples are rare. Comparisons of populations that differ in historical recurrence of environmental induction can offer insight into its evolutionary significance, and recent colonization of North America by the house finch (Carpodacus mexicanus) provides such an opportunity. RESULTS: In both native (southern Arizona) and newly established (northern Montana, 18 generations) populations, breeding female finches exhibit the same complex adaptation - a sex-bias in ovulation sequence - in response to population-specific environmental stimulus of differing recurrence. We document that, in the new population, the adaptation is induced by a novel environment during females' first breeding and is subsequently retained across breeding attempts. In the native population, first-breeding females expressed a precise adaptive response to a recurrent environmental stimulus without environmental induction. We document strong selection on environmental cue recognition in both populations and find that rearrangement of the same proximate mechanism - clustering of oocytes that become males and females - can enable an adaptive response to distinct environmental stimuli. CONCLUSION: The results show that developmental plasticity induced by novel environmental conditions confers significant fitness advantages to both maternal and offspring generations and might play an important role not only in the successful establishment of this invasive species across the widest ecological range of extant birds, but also can link environmental induction and genetic inheritance in the evolution of novel adaptations.


Subject(s)
Adaptation, Physiological , Biological Evolution , Environment , Finches/genetics , Animals , Arizona , Female , Finches/physiology , Male , Montana , Oviposition , Phenotype , Selection, Genetic , Sex Characteristics
20.
Proc Natl Acad Sci U S A ; 103(39): 14406-11, 2006 Sep 26.
Article in English | MEDLINE | ID: mdl-16983088

ABSTRACT

Duration of developmental stages in animals evolves under contrasting selection pressures of age-specific mortality and growth requirements. When relative importance of these effects varies across environments, evolution of developmental periods is expected to be slow. In birds, maternal effects on egg-laying order and offspring growth, two proximate determinants of nestling period, should enable rapid adjustment of developmental periods to even widely fluctuating mortality rates. We test this hypothesis in a population of house finches (Carpodacus mexicanus) breeding under two contrasting mortality risks: (i) a nest mite-free condition when selection on offspring survival favors a longer time in the nest; and (ii) a mite infestation when selection favors a shorter nest tenure. Mites affected survival of sons more than daughters, and females breeding under mite infestation laid male eggs last and female eggs first in the clutch, thereby reducing sons' exposure to mites and associated mortality. Strong sex bias in laying order and growth patterns enabled mite-infested offspring to achieve similar fledging size, despite a shorter nest tenure, compared with mite-free conditions. In mite-infested nests, male nestlings hatched at larger sizes, completed growth earlier, and had faster initial growth compared with mite-free nests, whereas mite-infested females grew more slowly but for a longer period of time. A combination of heavily sex-biased laying order and sex differences in growth patterns lowered mite-induced mortality by >10% in both sexes. Thus, strong maternal effects can account for frequently observed, but theoretically unexpected, concordance of mortality risks and growth patterns, especially under fluctuating ecological conditions.


Subject(s)
Finches/parasitology , Mites/physiology , Mortality , Parasites/physiology , Prejudice , Animals , Female , Male , Mothers , Nesting Behavior/physiology , Sex Ratio , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...