Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Res Sq ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798429

ABSTRACT

Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. Here we present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflowsimplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflowfor three use cases: bulk RNA-seq analysis with Salmon, metagenomics analysis with bioBakery, and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. While some limitations exist around workflow customization, AnVILWorkflowlowers the barrier to taking advantage of AnVIL's resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project (https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub (https://github.com/shbrief/AnVILWorkflow).

2.
Cell Death Dis ; 15(5): 365, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806451

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is one of the main causes of peritoneal fibrosis. However, the pathophysiological mechanisms of EMT, specifically its relationship with autophagy, are still unknown. This study aimed to evaluate the role of autophagy in transforming growth factor-beta 1 (TGF-ß1)-induced EMT in human peritoneal mesothelial cells (HPMCs). Primary cultured HPMCs were treated with TGF-ß1 (2 and 5 ng/mL) and changes in autophagy markers and the relationship between autophagy and EMT were evaluated. We also identified changes in EMT- and autophagy-related signaling pathways after autophagy and NADPH oxidase 4 (NOX4) inhibition. TGF-ß1 increased the generation of NOX4 and reactive oxygen species (ROS) in HPMCs, resulting in mitochondrial damage. Treatment with GKT137831 (20 µM), a NOX1/4 inhibitor, reduced ROS in the mitochondria of HPMC cells and reduced TGF-ß1-induced mitochondrial damage. Additionally, the indirect inhibition of autophagy by GKT137831 (20 µM) downregulated TGF-ß1-induced EMT, whereas direct inhibition of autophagy using 3-methyladenine (3-MA) (2 mM) or autophagy-related gene 5 (ATG5) gene silencing decreased the TGF-ß1-induced EMT in HPMCs. The suppressor of mothers against decapentaplegic 2/3 (Smad2/3), autophagy-related phosphoinositide 3-kinase (PI3K) class III, and protein kinase B (Akt) pathways, and mitogen-activated protein kinase (MAPK) signaling pathways, such as extracellular signal-regulated kinase (ERK) and P38, were involved in TGF-ß1-induced EMT. Autophagy and NOX4 inhibition suppressed the activation of these signaling pathways. Direct inhibition of autophagy and its indirect inhibition through the reduction of mitochondrial damage by upstream NOX4 inhibition reduced EMT in HPMCs. These results suggest that autophagy could serve as a therapeutic target for the prevention of peritoneal fibrosis in patients undergoing peritoneal dialysis.


Subject(s)
Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , NADPH Oxidase 4 , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta1 , Humans , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Signal Transduction/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Peritoneum/pathology , Pyrazolones , Pyridones
3.
Exp Mol Med ; 56(5): 1066-1079, 2024 May.
Article in English | MEDLINE | ID: mdl-38689091

ABSTRACT

The glycerol 3-phosphate shuttle (GPS) is composed of two different enzymes: cytosolic NAD+-linked glycerol 3-phosphate dehydrogenase 1 (GPD1) and mitochondrial FAD-linked glycerol 3-phosphate dehydrogenase 2 (GPD2). These two enzymes work together to act as an NADH shuttle for mitochondrial bioenergetics and function as an important bridge between glucose and lipid metabolism. Since these genes were discovered in the 1960s, their abnormal expression has been described in various metabolic diseases and tumors. Nevertheless, it took a long time until scientists could investigate the causal relationship of these enzymes in those pathophysiological conditions. To date, numerous studies have explored the involvement and mechanisms of GPD1 and GPD2 in cancer and other diseases, encompassing reports of controversial and non-conventional mechanisms. In this review, we summarize and update current knowledge regarding the functions and effects of GPS to provide an overview of how the enzymes influence disease conditions. The potential and challenges of developing therapeutic strategies targeting these enzymes are also discussed.


Subject(s)
Glycerolphosphate Dehydrogenase , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/enzymology , Glycerolphosphate Dehydrogenase/metabolism , Glycerolphosphate Dehydrogenase/genetics , Animals , Mitochondria/metabolism , Mitochondria/genetics
4.
Curr Issues Mol Biol ; 46(3): 1757-1767, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38534731

ABSTRACT

Dual immunoglobulin domain-containing cell adhesion molecule (DICAM) is a type I transmembrane protein that presents in various cells including renal tubular cells. This study evaluated the expression and protective role of DICAM in renal tubular cell injury. HK-2 cells were incubated and treated with lipopolysaccharide (LPS, 30 µg/mL) or hydrogen peroxide (H2O2, 100 µM) for 24 h. To investigate the effect of the gene silencing of DICAM, small interfering RNA of DICAM was used. Additionally, to explain its role in cellular response to injury, DICAM was overexpressed using an adenoviral vector. DICAM protein expression levels significantly increased following treatment with LPS or H2O2 in HK-2 cells. In response to oxidative stress, DICAM showed an earlier increase (2-4 h following treatment) than neutrophil gelatinase-associated lipocalin (NGAL) (24 h following treatment). DICAM gene silencing increased the protein expression of inflammation-related markers, including IL-1ß, TNF-α, NOX4, integrin ß1, and integrin ß3, in H2O2-induced HK-2 cell injury. Likewise, in the LPS-induced HK-2 cell injury, DICAM knockdown led to a decrease in occludin levels and an increase in integrin ß3, IL-1ß, and IL-6 levels. Furthermore, DICAM overexpression followed by LPS-induced HK-2 cell injury resulted in an increase in occludin levels and a decrease in integrin ß1, integrin ß3, TNF-α, IL-1ß, and IL-6 levels, suggesting an alleviating effect on inflammatory responses. DICAM was elevated in the early stage of regular tubular cell injury and may protect against renal tubular injury through its anti-inflammatory properties. DICAM has a potential as an early diagnostic marker and therapeutic target for renal cell injury.

5.
Nutrients ; 15(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068817

ABSTRACT

Abnormal lipid metabolism increases the relative risk of kidney disease in patients with a single kidney. Using transcriptome analysis, we investigated whether a high-fat diet leads to abnormalities in lipid metabolism and induces kidney cell-specific damage in unilateral nephrectomy mice. Mice with unilateral nephrectomy fed a high-fat diet for 12 weeks exhibited progressive renal dysfunction in proximal tubules, including lipid accumulation, vacuolization, and cell damage. Ring finger protein 20 (RNF20) is a ligase of nuclear receptor corepressor of peroxisome proliferator-activated receptors (PPARs). The transcriptome analysis revealed the involvement of RNF20-related transcriptome changes in PPAR signaling, lipid metabolism, and water transmembrane transporter under a high-fat diet and unilateral nephrectomy. In vitro treatment of proximal tubular cells with palmitic acid induced lipotoxicity by altering RNF20, PPARα, and ATP-binding cassette subfamily A member 1 (ABCA1) expression. PPARγ and aquaporin 2 (AQP2) expression decreased in collecting duct cells, regulating genetic changes in the water reabsorption process. In conclusion, a high-fat diet induces lipid accumulation under unilateral nephrectomy via altering RNF20-mediated regulation and causing functional damage to cells as a result of abnormal lipid metabolism, thereby leading to structural and functional kidney deterioration.


Subject(s)
Diet, High-Fat , Kidney Diseases , Ubiquitin-Protein Ligases , Animals , Mice , Aquaporin 2/metabolism , Diet, High-Fat/adverse effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Lipid Metabolism/physiology , Lipids , Nephrectomy/adverse effects , PPAR alpha/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Water/metabolism
6.
Heliyon ; 9(9): e19957, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809684

ABSTRACT

This cross-sectional study aimed to evaluate the applicability of the London Atlas for age estimation in the Korean population by comparing with Lee's and Willems' methods. Dental ages of 475 orthopantomographs from Korean individuals aged 4-15 years (mean 10.32 ± 3.31 years) were estimated using the London Atlas, Lee's and Willems' methods. Correlation between dental and chronological age was determined using Pearson's correlation coefficient, and the statistical difference between dental and chronological age was analyzed using a paired t-test. The bias (mean differences), mean absolute error, and root mean square error between dental and chronological age, stratified by age groups and estimation methods, were calculated. Differences in bias and absolute error between sexes were scrutinized using an independent-samples t-test. Age estimates of the three tested methods were combined and compared to those of each individual method. The London Atlas and Willems methods resulted in overestimations, whereas the Lee method led to an underestimation on the entire sample. The overall accuracy was observed in the order of Lee's method, the London Atlas, and Willems' method. The London Atlas demonstrated superior consistency of estimation performance across age groups and no significant differences in estimation performance between sexes. The combination of estimates from the London Atlas and Lee's method resulted in an enhancement in bias and accuracy. We conclude that the London Atlas, due to its bias and accuracy comparable to Lee's and Willems' methods, is applicable for forensic practice in the Korean population.

7.
Anat Cell Biol ; 56(4): 474-481, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37694294

ABSTRACT

The dental characteristics created by acquired dental treatments can be used as age estimators. This pilot study aimed to analyze the correlation between the number of teeth observed for dental characteristics and chronological age and to develop new non-invasive age estimation models. Dental features on panoramic radiographs (420 radiographs of subjects aged 20-89 years) were classified and coded. The correlation between the number of teeth for each selected code (codes V, X, T, F, P, and L) and age was observed, and multiple regression was performed to analyze the relationship between them. Eleven regression models with various combinations of dental sextants were presented. The model with the data from both sides of the posterior teeth on both jaws showed the best performance (root mean square error of 14.78 years and an adjusted R2 of 0.461). The model with all teeth was the second-best. Based on these results, we confirmed statistically significant correlations between certain dental features and chronological age. We also observed that some regression models performed sufficiently well to be used as adjunctive methods in forensic practice. These results provide valuable information for the design and performance of future full-scale studies.

8.
Sci Rep ; 13(1): 6396, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076541

ABSTRACT

Optical coherence tomography angiography (OCTA) provides three-dimensional structural and semiquantitative imaging of microvasculature in vivo. We developed an OCTA imaging protocol for a murine kidney ischemia-reperfusion injury (IRI) model to investigate the correlation between renal microvascular changes and ischemic damage. Mice were divided into mild and moderate IRI groups according to the duration of ischemia (10 and 35 mins, respectively). Each animal was imaged at baseline; during ischemia; and at 1, 15, 30, 45, and 60 mins after ischemia. Amplitude decorrelation OCTA images were constructed with 1.5-, 3.0-, and 5.8-ms interscan times, to calculate the semiquantitative flow index in the superficial (50-70 µm) and the deep (220-340 µm) capillaries of the renal cortex. The mild IRI group showed no significant flow index change in both the superfial and the deep layers. The moderate IRI group showed a significantly decreased flow index from 15 and 45 mins in the superficial and deep layers, respectively. Seven weeks after IRI induction, the moderate IRI group showed lower kidney function and higher collagen deposition than the mild IRI group. OCTA imaging of the murine IRI model revealed changes in superficial blood flow after ischemic injury. A more pronounced decrease in superficial blood flow than in deep blood flow was associated with sustained dysfunction after IRI. Further investigation on post-IRI renal microvascular response using OCTA may improve our understanding of the relationship between the degree of ischemic insult and kidney function.


Subject(s)
Reperfusion Injury , Tomography, Optical Coherence , Mice , Animals , Kidney/diagnostic imaging , Kidney/blood supply , Reperfusion Injury/diagnostic imaging , Reperfusion Injury/complications , Ischemia/diagnostic imaging , Ischemia/complications , Microvessels/diagnostic imaging , Angiography
9.
Theranostics ; 13(2): 438-457, 2023.
Article in English | MEDLINE | ID: mdl-36632231

ABSTRACT

Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.


Subject(s)
Glycerolphosphate Dehydrogenase , Mitochondria , Neoplasms , Proto-Oncogene Proteins c-akt , Energy Metabolism , Ethers/metabolism , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Mitochondria/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Mice , Neoplasms/enzymology , Neoplasms/pathology , Humans
10.
Sci Rep ; 13(1): 726, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639726

ABSTRACT

Teeth are known to be the most accurate age indicators of human body and are frequently applied in forensic age estimation. We aimed to validate data mining-based dental age estimation, by comparing the accuracy of the estimation and classification performance of 18-year thresholds with conventional methods and with data mining-based age estimation. A total of 2657 panoramic radiographs were collected from Koreans and Japanese populations aged 15 to 23 years. They were subdivided into a training and internal test set of 900 radiographs each from Koreans, and an external test set of 857 radiographs from Japanese. We compared the accuracy and classification performance of the test sets from conventional methods with those from the data mining models. The accuracy of the conventional method with the internal test set was slightly higher than that of the data mining models, with a slight difference (mean absolute error < 0.21 years, root mean square error < 0.24 years). The classification performance of the 18-year threshold was also similar between the conventional method and the data mining models. Thus, conventional methods can be replaced by data mining models in forensic age estimation using second and third molar maturity of Korean juveniles and young adults.


Subject(s)
Age Determination by Teeth , Humans , Young Adult , Age Determination by Teeth/methods , Asian People , Data Mining , Molar, Third , Republic of Korea , Japan
11.
Anal Chem ; 95(2): 1184-1192, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36602057

ABSTRACT

Early diagnosis of hepatocellular carcinoma (HCC) is difficult; the lack of convenient biomarker-based diagnostic modalities renders high-risk HCC patients burdened by life-long periodical examinations. Here, a new chemical biopsy approach was developed for noninvasive diagnosis of HCC using urine samples. Bioinformatic screening for tumor suppressors yielded glycine N-methyltransferase (GNMT) as a biomarker with clinical relevance to HCC tumorigenesis. A liquid chromatography-mass spectrometry (LC-MS)-based chemical biopsy detecting nonradioactive 13C-sarcosine from 13C-glycine was designed to noninvasively assess liver GNMT activity extrahepatically. 13C-Sarcosine showed a strong correlation with GNMT in normal and cancerous liver cells. In an autochthonous animal model developing visible cancer nodules at 17 weeks, the urinary 13C-sarcosine chemical biopsy exhibited notable changes as early as 8 weeks, showing significant correlations with liver GNMT and molecular pathological changes. Our chemical biopsy approach should facilitate early and noninvasive diagnosis of HCC, with direct relevance to tumorigenesis, which can be straightforwardly applied to other diseases.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Glycine N-Methyltransferase , Sarcosine , Liver/pathology , Cell Transformation, Neoplastic/pathology , Carcinogenesis/pathology
12.
PLoS One ; 17(7): e0271247, 2022.
Article in English | MEDLINE | ID: mdl-35802665

ABSTRACT

This study aimed to validate Lee's age estimation method and assess the 18-year threshold in Korean and Japanese populations. We evaluated the maxillary and mandibular second (M2) and third molars (M3) in 2657 orthopantomograms of the Korean and Japanese populations aged 15-23 years (19.47±2.62 years for Koreans, 19.31±2.60 years for Japanese), using Demirjian's criteria. Dental age was estimated, and correlations between chronological and dental ages were analyzed. Classification performance was calculated based on the 18-year threshold. The relationship between developmental stage and chronologic age was analyzed using multiple linear regression. Our results revealed that Lee's method was appropriate for estimation in the Korean population. When the Lee's method was applied to the Japanese population, a lower value of correlation coefficients between estimated and chronological age, and lower specificity were observed. Population differences were observed predominantly in the stages of root development (stages F and G) of M2s and M3s in both jaws and more frequently in females than in males. In the multiple linear regression between developmental stage and chronological age, lower values of adjusted r2 were observed in the Japanese population than in the Koreans. In conclusion, the Lee's method derived from the Korean population data might be unsuitable for Japanese juveniles and adolescents. To support the findings of this study, future studies with samples from multiple institutions should be conducted. Future studies with larger sample sizes are also warranted to improve the accuracy of dental age estimation and confirm the developmental pattern of teeth in the Japanese population.


Subject(s)
Age Determination by Teeth , Adolescent , Age Determination by Teeth/methods , Female , Forensic Dentistry/methods , Humans , Japan , Male , Molar, Third/diagnostic imaging , Radiography, Panoramic , Republic of Korea
13.
Nat Commun ; 13(1): 3695, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760813

ABSTRACT

Millions of transcriptomic profiles have been deposited in public archives, yet remain underused for the interpretation of new experiments. We present a method for interpreting new transcriptomic datasets through instant comparison to public datasets without high-performance computing requirements. We apply Principal Component Analysis on 536 studies comprising 44,890 human RNA sequencing profiles and aggregate sufficiently similar loading vectors to form Replicable Axes of Variation (RAV). RAVs are annotated with metadata of originating studies and by gene set enrichment analysis. Functionality to associate new datasets with RAVs, extract interpretable annotations, and provide intuitive visualization are implemented as the GenomicSuperSignature R/Bioconductor package. We demonstrate the efficient and coherent database search, robustness to batch effects and heterogeneous training data, and transfer learning capacity of our method using TCGA and rare diseases datasets. GenomicSuperSignature aids in analyzing new gene expression data in the context of existing databases using minimal computing resources.


Subject(s)
Databases, Genetic , Software , Humans , RNA-Seq , Transcriptome/genetics
14.
Biochem Biophys Res Commun ; 610: 182-187, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35468422

ABSTRACT

Rv1211 is a conserved hypothetical protein in Mycobacterium tuberculosis and is required for the growth and pathogenesis of the bacteria. The protein has been suggested as a calmodulin-like calcium-binding protein with an EF-hand motif and as a target of trifluoperazine, a calmodulin antagonist in eukaryotes that inhibits mycobacterial growth. Here, we expressed the recombinant protein of Rv1211 and performed structural and biochemical studies of Rv1211 and its interaction with Ca2+ or trifluoperazine. Surprisingly, Rv1211 exhibited an elution property typical of a natively unfolded protein. Subsequent circular dichroism experiments with temperature elevation and trifluoroethanol treatment showed that Rv1211 has unfolded structure. Additional NMR experiment confirmed the unfolded state of the protein and further showed that it does not bind to Ca2+. Still, Rv1211 did bind to trifluoperazine, as evidenced by the two-dimensional NMR spectra of 15N-labeled Rv1211. However, there were no peak shifts upon binding, showing that Rv1211 retained its unfolded state even after the trifluoperazine binding. The residues involved in the binding were clustered in the C-terminal region, as identified by the sequence assignment. Isothermal titration calorimetry showed that the Kd of trifluoperazine-Rv1211 binding is 41 µM and that the stoichiometry is 1 : 2 (Rv1211: trifluoperazine). Our results argue against the suggestion of Rv1211 as a Ca2+-binding calmodulin-like protein, and show that Rv1211 is a natively unfolded protein that binds to trifluoperazine. In addition, our results suggest the evidence of the "Fuzziness" in the Rv1211-trifluoperazine interaction that differs from the conventional binding-induced folding of natively unfolded proteins.


Subject(s)
Intrinsically Disordered Proteins , Mycobacterium tuberculosis , Calcium/metabolism , Calmodulin/metabolism , EF Hand Motifs , Intrinsically Disordered Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Trifluoperazine/chemistry , Trifluoperazine/pharmacology
15.
Int J Mol Sci ; 22(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34575914

ABSTRACT

Recently, the role of kidney pericytes in kidney fibrosis has been investigated. This study aims to evaluate the effect of paricalcitol on hypoxia-induced and TGF-ß1-induced injury in kidney pericytes. The primary cultured pericytes were pretreated with paricalcitol (20 ng/mL) for 90 min before inducing injury, and then they were exposed to TGF-ß1 (5 ng/mL) or hypoxia (1% O2 and 5% CO2). TGF-ß1 increased α-SMA and other fibrosis markers but reduced PDGFRß expression in pericytes, whereas paricalcitol reversed the changes. Paricalcitol inhibited the TGF-ß1-induced cell migration of pericytes. Hypoxia increased TGF-ß1, α-SMA and other fibrosis markers but reduced PDGFRß expression in pericyte, whereas paricalcitol reversed them. Hypoxia activated the HIF-1α and downstream molecules including prolyl hydroxylase 3 and glucose transporter-1, whereas paricalcitol attenuated the activation of the HIF-1α-dependent molecules and TGF-ß1/Smad signaling pathways in hypoxic pericytes. The gene silencing of HIF-1α vanished the hypoxia-induced TGF-ß1, α-SMA upregulation, and PDGFRß downregulation. The effect of paricalcitol on the HIF-1α-dependent changes of fibrosis markers was not significant after the gene silencing of HIF-1α. In addition, hypoxia aggravated the oxidative stress in pericytes, whereas paricalcitol reversed the oxidative stress by increasing the antioxidant enzymes in an HIF-1α-independent manner. In conclusion, paricalcitol improved the phenotype changes of pericyte to myofibroblast in TGF-ß1-stimulated pericytes. In addition, paricalcitol improved the expression of fibrosis markers in hypoxia-exposed pericytes both in an HIF-1α-dependent and independent manner.


Subject(s)
Ergocalciferols/pharmacology , Hypoxia/metabolism , Pericytes/drug effects , Pericytes/metabolism , Protective Agents/pharmacology , Transforming Growth Factor beta1/metabolism , Animals , Cells, Cultured , Fibrosis , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Mice , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Oxidative Stress , Pericytes/pathology , Phosphorylation , Signal Transduction/drug effects , Smad2 Protein/metabolism
16.
Metabolites ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34436421

ABSTRACT

The biguanide drug metformin has been widely used for the treatment of type 2 diabetes, and there is evidence supporting the anticancer effect of metformin despite some controversy. Here, we report the growth inhibitory activity of metformin in the breast cancer (MCF-7) cells, both in vitro and in vivo, and the associated metabolic changes. In particular, a decrease in a well-known oncometabolite 2-hydroxyglutarate (2-HG) was discovered by a metabolomics approach. The decrease in 2-HG by metformin was accompanied by the reduction in histone methylation, consistent with the known tumorigenic mechanism of 2-HG. The relevance of 2-HG inhibition in breast cancer was also supported by a higher level of 2-HG in human breast cancer tissues. Genetic knockdown of PHGDH identified the PHGDH pathway as the producer of 2-HG in the MCF-7 cells that do not carry isocitrate dehydrogenase 1 and 2 (IDH1/IDH2) mutations, the conventional producer of 2-HG. We also showed that metformin's inhibitory effect on the PHGDH-2HG axis may occur through the regulation of the AMPK-MYC pathway. Overall, our results provide an explanation for the coherent pathway from complex I inhibition to epigenetic changes for metformin's anticancer effect.

17.
Biomed Res Int ; 2021: 5515478, 2021.
Article in English | MEDLINE | ID: mdl-34195263

ABSTRACT

BACKGROUND: ML171 is a potent nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor with isoform selectivity only for NOX1. This study is aimed at investigating the safety of ML171 after a single intraperitoneal (IP) injection in mice. METHODS: The toxicity of a single dose of ML171 was evaluated in 6-week-old Institute of Cancer Research (ICR) mice in a good laboratory practice (GLP) laboratory. Twenty-five mice of each sex were assigned to five groups: negative control, vehicle control, and 125, 250, and 500 mg/kg of ML171. All mice were acclimatized for one week before beginning the study. Mice received an IP injection of ML171 or vehicle. The general condition and mortality of the animals were observed. The mice were sacrificed to evaluate histopathology 14 days after the administration of ML171 or vehicle. RESULTS: Bodyweights were not significantly different in any group. Three males and one female died due to ML171 administration in the 500 mg/kg dose group. Autopsies of the surviving mice did not reveal any significant abnormalities after the injection of 125 mg/kg of ML171. However, the anterior lobe edge of the liver was thickened and adhesions between the liver and adjacent organs were observed in mice treated with 250 or 500 mg/kg of ML171. In addition, hypertrophy of centrilobular hepatocytes and inflammatory cell infiltration were observed after injection of 250 and 500 mg/kg of ML171. CONCLUSION: Our results indicate that the lethal IP injection dose of ML171 is 500 mg/kg for both males and females. Mortality were not observed for lower doses of ML171. The safe dose of single IP ML171 in ICR mice was 250 mg/kg or less. Further studies are needed to confirm the safety of ML171 in the human body.


Subject(s)
NADPH Oxidase 1/antagonists & inhibitors , Phenothiazines/pharmacology , Phenothiazines/toxicity , Animals , Drug Evaluation, Preclinical , Female , Male , Mice , Mice, Inbred ICR , Protein Isoforms , Toxicity Tests
18.
Nat Med ; 27(2): 321-332, 2021 02.
Article in English | MEDLINE | ID: mdl-33432175

ABSTRACT

The gut microbiome is shaped by diet and influences host metabolism; however, these links are complex and can be unique to each individual. We performed deep metagenomic sequencing of 1,203 gut microbiomes from 1,098 individuals enrolled in the Personalised Responses to Dietary Composition Trial (PREDICT 1) study, whose detailed long-term diet information, as well as hundreds of fasting and same-meal postprandial cardiometabolic blood marker measurements were available. We found many significant associations between microbes and specific nutrients, foods, food groups and general dietary indices, which were driven especially by the presence and diversity of healthy and plant-based foods. Microbial biomarkers of obesity were reproducible across external publicly available cohorts and in agreement with circulating blood metabolites that are indicators of cardiovascular disease risk. While some microbes, such as Prevotella copri and Blastocystis spp., were indicators of favorable postprandial glucose metabolism, overall microbiome composition was predictive for a large panel of cardiometabolic blood markers including fasting and postprandial glycemic, lipemic and inflammatory indices. The panel of intestinal species associated with healthy dietary habits overlapped with those associated with favorable cardiometabolic and postprandial markers, indicating that our large-scale resource can potentially stratify the gut microbiome into generalizable health levels in individuals without clinically manifest disease.


Subject(s)
Gastrointestinal Microbiome/genetics , Metagenome/genetics , Microbiota/genetics , Obesity/microbiology , Adult , Biomarkers/metabolism , Blastocystis/genetics , Blood Glucose/metabolism , Child , Diet/adverse effects , Fasting/metabolism , Feeding Behavior , Female , Food Microbiology , Glucose/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Obesity/genetics , Obesity/metabolism , Postprandial Period/genetics , Prevotella/genetics , Prevotella/isolation & purification
19.
Int J Mol Sci ; 21(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207690

ABSTRACT

The protective effects of alpha-1 antitrypsin (AAT) in tacrolimus (TAC)-induced renal injury was evaluated in a rat model. The TAC group rats were subcutaneously injected with 2 mg/kg TAC every day for four weeks. The TAC with AAT group was cotreated with daily subcutaneous injections of TAC and intraperitoneal injections of AAT (80 mg/kg) for four weeks. The effects of AAT on TAC-induced renal injury were evaluated using serum biochemistry, histopathology, and Western blotting. The TAC injection significantly increased renal interstitial fibrosis, inflammation, and apoptosis as compared to the control treatment. The histopathological examination showed that cotreatment of TAC and AAT attenuated interstitial fibrosis (collagen, fibronectin, and α-SMA staining), and α-SMA expression in Western blotting was also decreased. Immunohistochemical staining for inflammation (osteopontin and ED-1 staining) revealed improved interstitial inflammation in the TAC with AAT group compared to that in the TAC group. The TAC treatment increased renal apoptosis compared to the control treatment, based on the results of increased immunohistochemical staining of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), increased caspase-3 activity, and lower Bcl-2 to Bad expression ratio. However, AAT cotreatment significantly changed these markers and consequently showed decreased apoptosis. AAT protects against TAC-induced renal injury via antifibrotic, anti-inflammatory, and antiapoptotic effects.


Subject(s)
Acute Kidney Injury , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Gene Expression Regulation/drug effects , Tacrolimus/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Animals , Fibrosis , Male , Rats , Rats, Sprague-Dawley , Tacrolimus/pharmacology , alpha 1-Antitrypsin
20.
JCO Clin Cancer Inform ; 4: 958-971, 2020 10.
Article in English | MEDLINE | ID: mdl-33119407

ABSTRACT

PURPOSE: Investigations of the molecular basis for the development, progression, and treatment of cancer increasingly use complementary genomic assays to gather multiomic data, but management and analysis of such data remain complex. The cBioPortal for cancer genomics currently provides multiomic data from > 260 public studies, including The Cancer Genome Atlas (TCGA) data sets, but integration of different data types remains challenging and error prone for computational methods and tools using these resources. Recent advances in data infrastructure within the Bioconductor project enable a novel and powerful approach to creating fully integrated representations of these multiomic, pan-cancer databases. METHODS: We provide a set of R/Bioconductor packages for working with TCGA legacy data and cBioPortal data, with special considerations for loading time; efficient representations in and out of memory; analysis platform; and an integrative framework, such as MultiAssayExperiment. Large methylation data sets are provided through out-of-memory data representation to provide responsive loading times and analysis capabilities on machines with limited memory. RESULTS: We developed the curatedTCGAData and cBioPortalData R/Bioconductor packages to provide integrated multiomic data sets from the TCGA legacy database and the cBioPortal web application programming interface using the MultiAssayExperiment data structure. This suite of tools provides coordination of diverse experimental assays with clinicopathological data with minimal data management burden, as demonstrated through several greatly simplified multiomic and pan-cancer analyses. CONCLUSION: These integrated representations enable analysts and tool developers to apply general statistical and plotting methods to extensive multiomic data through user-friendly commands and documented examples.


Subject(s)
Computational Biology , Data Management , Databases, Genetic , Genomics , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...