Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters










Publication year range
1.
J Pain ; : 104552, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692398

ABSTRACT

Bortezomib-induced neuropathic pain (BINP) poses a challenge in multiple myeloma (MM) treatment. Genetic factors play a key role in BINP susceptibility, but research has predominantly focused on Caucasian populations. This research explored novel genetic risk loci and pathways associated with BINP development in Korean MM patients, while evaluating reproducibility of variants from Caucasians. Clinical data and buffy coat samples from 185 MM patients on bortezomib were collected. The cohort was split into discovery and validation cohorts through random stratification of clinical risk factors for BINP. GWAS was performed on the discovery cohort (n=74) with Infinium Global Screening Array-24 v3.0 BeadChip (654,027 SNPs). Relevant biological pathways were identified using pathway scoring algorithm (PASCAL). The top 20 SNPs were validated in the validation cohort (n=111). Previously reported SNPs were validated in the entire cohort (n=185). Pathway analysis of the GWAS results identified 31 relevant pathways, including immune systems and endosomal vacuolar pathways. Among top 20 SNPs from discovery cohort, 16 were replicated, which included intronic variants in ASIC2 and SMOC2, recently implicated in nociception, as well as intergenic variants or long non-coding RNAs. None of the 17 previously reported SNPs remained significant in our cohort (rs2274578, p=0.085). This study represents the first investigation of novel genetic loci and biological pathways associated with BINP occurrence. Our findings, in conjunction with existing Caucasian studies, expand the understanding of personalized risk prediction and disease mechanisms. PERSPECTIVE: This article is the first to explore novel genetic loci and pathways linked to bortezomib-induced neuropathic pain (BINP) in Korean multiple myeloma patients, offering novel insights beyond the existing research focused on Caucasian populations, into personalized risk assessment and therapeutic strategies of BINP.

2.
J Pain ; : 104435, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38008390

ABSTRACT

Lazertinib (JNJ-73841937, YH25448) is a mutant-selective irreversible epidermal growth factor receptor tyrosine kinase inhibitor targeting both the T790M and activating mutation while sparing wild-type epidermal growth factor receptor. Paresthesia is one of the most common adverse events seen with lazertinib treatment, suggesting that lazertinib could affect the sensory nervous system. However, the mechanism of action for this paresthesia remains unclear. In this study, we investigated whether and how lazertinib affects peripheral sensory neurons. Through Fura-2-based calcium imaging and whole-cell patch clamp recording in primary-cultured dorsal root ganglion (DRG) neurons from adult mice, we found that application of lazertinib elicits spontaneous calcium responses in a subset of small-to-medium-sized neurons. Moreover, lazertinib induced spontaneous firings and hyperexcitability in a subset of transient receptor potential vanilloid 1-lineage DRG neurons and sensitized transient receptor potential ankyrin 1 (TRPA1) response, while sparing transient receptor potential vanilloid 1 response. Lazertinib-responsive neurons were also responsive to capsaicin, further supporting that lazertinib selectively activates nociceptive neurons. Lazertinib-induced calcium responses were pharmacologically blocked with HC-030031 (TRPA1 antagonist) and MDL-12330A (adenylyl cyclase inhibitor), suggesting that lazertinib activates sensory neurons through indirect activation of TRPA1. However, unlike vincristine which produces peripheral neuropathy by axonal degeneration, lazertinib did not cause neurite fragmentation in cultured DRG neurons. Finally, intraplantar injection of lazertinib induced TRPA1-dependent pain-like behaviors in vivo. Collectively, our data suggest a direct effect of lazertinib on nociceptive sensory neurons via TRPA1 selective mechanisms, which could be a putative mechanism of lazertinib-induced sensory abnormalities in clinical patients. PERSPECTIVE: This article presents a TRPA1-dependent, lazertinib-induced activation of mouse sensory neurons in vitro and lazertinib-induced pain-like behaviors in vivo. The same mechanisms may underlie the clinical condition, suggesting that TRPA1 could be a potential therapeutic target to manage lazertinib-induced paresthesia.

3.
Int J Oral Sci ; 15(1): 45, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749100

ABSTRACT

Dental primary afferent (DPA) neurons and proprioceptive mesencephalic trigeminal nucleus (MTN) neurons, located in the trigeminal ganglion and the brainstem, respectively, are essential for controlling masticatory functions. Despite extensive transcriptomic studies on various somatosensory neurons, there is still a lack of knowledge about the molecular identities of these populations due to technical challenges in their circuit-validated isolation. Here, we employed high-depth single-cell RNA sequencing (scRNA-seq) in combination with retrograde tracing in mice to identify intrinsic transcriptional features of DPA and MTN neurons. Our transcriptome analysis revealed five major types of DPA neurons with cell type-specific gene enrichment, some of which exhibit unique mechano-nociceptive properties capable of transmitting nociception in response to innocuous mechanical stimuli in the teeth. Furthermore, we discovered cellular heterogeneity within MTN neurons that potentially contribute to their responsiveness to mechanical stretch in the masseter muscle spindles. Additionally, DPA and MTN neurons represented sensory compartments with distinct molecular profiles characterized by various ion channels, receptors, neuropeptides, and mechanoreceptors. Together, our study provides new biological insights regarding the highly specialized mechanosensory functions of DPA and MTN neurons in pain and proprioception.


Subject(s)
Neurons , Proprioception , Animals , Mice , Gene Expression Profiling , Pain , Sequence Analysis, RNA
4.
Trends Neurosci ; 46(8): 617-627, 2023 08.
Article in English | MEDLINE | ID: mdl-37385878

ABSTRACT

Novel disease-modifying treatments for neuropathic pain are urgently required. The cellular immune response to nerve injury represents a promising target for therapeutic development. Recently, the role of natural killer (NK) cells in both CNS and PNS disease has been the subject of growing interest. In this opinion article, we set out the case for NK cell-based intervention as a promising avenue for development in the management of neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the PNS by contrasting with their reported functional roles in CNS diseases, and we suggest strategies for using the beneficial functions of NK cells and immune-based therapeutics in the context of neuropathic pain.


Subject(s)
Killer Cells, Natural , Neuralgia , Humans , Neuralgia/therapy
5.
Pain ; 164(10): 2327-2342, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37366595

ABSTRACT

ABSTRACT: Traumatic peripheral nerve injuries are at high risk of neuropathic pain for which novel effective therapies are urgently needed. Preclinical models of neuropathic pain typically involve irreversible ligation and/or nerve transection (neurotmesis). However, translation of findings to the clinic has so far been unsuccessful, raising questions on injury model validity and clinically relevance. Traumatic nerve injuries seen in the clinic commonly result in axonotmesis (ie, crush), yet the neuropathic phenotype of "painful" nerve crush injuries remains poorly understood. We report the neuropathology and sensory symptoms of a focal nerve crush injury using custom-modified hemostats resulting in either complete ("full") or incomplete ("partial") axonotmesis in adult mice. Assays of thermal and mechanically evoked pain-like behavior were paralleled by transmission electron microscopy, immunohistochemistry, and anatomical tracing of the peripheral nerve. In both crush models, motor function was equally affected early after injury; by contrast, partial crush of the nerve resulted in the early return of pinprick sensitivity, followed by a transient thermal and chronic tactile hypersensitivity of the affected hind paw, which was not observed after a full crush injury. The partially crushed nerve was characterized by the sparing of small-diameter myelinated axons and intraepidermal nerve fibers, fewer dorsal root ganglia expressing the injury marker activating transcription factor 3, and lower serum levels of neurofilament light chain. By day 30, axons showed signs of reduced myelin thickness. In summary, the escape of small-diameter axons from Wallerian degeneration is likely a determinant of chronic pain pathophysiology distinct from the general response to complete nerve injury.


Subject(s)
Crush Injuries , Neuralgia , Peripheral Nerve Injuries , Rats , Mice , Animals , Rats, Sprague-Dawley , Axons/pathology , Crush Injuries/pathology , Nerve Crush , Nerve Regeneration/physiology , Sciatic Nerve/injuries
6.
Exp Neurobiol ; 32(2): 68-82, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37164647

ABSTRACT

Subdiaphragmatic vagotomy (SDV) is known to produce analgesic effect in various pain conditions including not only visceral pain but also somatic pain. We aimed to determine brain mechanisms by which SDV induces analgesic effect in somatic pain condition by using formalin-induced acute inflammatory pain model. We identified brain regions that mediate SDV-induced analgesic effect on acute inflammatory pain by analyzing c-Fos expression in the whole brain. We found that c-Fos expression was specifically increased in the anterior insular cortex (aIC) among subregions of the insular cortex in acute inflammatory pain, which was reversed by SDV. These results were not mimicked in female mice, indicating sexual-dimorphism in SDV-induced analgesia. SDV decreased c-Fos expressions more preferentially in glutamatergic neurons rather than GABAergic neurons in the aIC, and pharmacological activation of glutamatergic neurons with NMDA in the aIC inhibited SDV-induced analgesic effect. Furthermore, chemogenetic activation of glutamatergic neurons in the aIC reversed SDV-induced analgesia. Taken together, our results suggest that the decrease in the neuronal activity of glutamatergic neurons in the aIC mediates SDV-induced analgesic effect, potentially serving as an important therapeutic target to treat inflammatory pain.

7.
Neuroscience ; 495: 58-73, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35643248

ABSTRACT

Feeding behaviors are closely associated with chronic pain in adult rodents. Our recent study revealed that 2 h refeeding after 24 h fasting (i.e., refeeding) attenuates pain behavior under chronic inflammatory pain conditions. However, while brain circuits mediating fasting-induced analgesia have been identified, the underlying mechanism of refeeding-induced analgesia is still elusive. Herein, we demonstrate that the neural activities in the nucleus accumbens shell (NAcS) and anterior insular cortex (aIC) were increased in a modified Complete Freund's Adjuvant (CFA)-induced chronic inflammatory pain condition, which was reversed by refeeding. We also found that refeeding reduced the enhanced excitability of aICCaMKII-NAcSD2R projecting neurons in this CFA model. Besides, chemogenetic inhibition of aICCaMKII-NAcSD2R neural circuit suppressed chronic pain behavior while activation of this circuit reversed refeeding-induced analgesia. Thus, the present study suggests that aICCaMKII-NAcSD2R neural circuit mediates refeeding-induced analgesia, thereby serving as a potential therapeutic target to manage chronic pain.


Subject(s)
Analgesia , Chronic Pain , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chronic Pain/metabolism , Freund's Adjuvant/toxicity , Humans , Nucleus Accumbens/metabolism , Pain Management
8.
Front Cell Neurosci ; 16: 841239, 2022.
Article in English | MEDLINE | ID: mdl-35558874

ABSTRACT

Noradrenergic neurons in the locus coeruleus (LC) release noradrenaline (NA) that acts via volume transmission to activate extrasynaptic G-protein coupled receptors (GPCRs) in target cells throughout the brain. As the closest projection, the dorsal LC laterally adjoins the mesencephalic trigeminal nucleus (MTN), in which proprioceptive primary sensory neurons innervating muscle spindles of jaw-closing muscles are exceptionally located. MTN neurons express α2-adrenergic receptors (α2-ARs) and display hyperpolarization-activated cyclic nucleotide-gated (HCN) currents (Ihs), which is downregulated by α2-AR activation. To quantify the activity-dependent outcome of volume transmission of NA from LC to MTN, we investigated how direct LC activation inhibits Ih in MTN neurons by performing dual whole-cell recordings from LC and MTN neurons. Repetition of 20 Hz spike-train evoked with 1-s current-pulse in LC neurons every 30 s resulted in a gradual decrease in Ih evoked every 30 s, revealing a Hill-type relationship between the number of spike-trains in LC neurons and the degree of Ih inhibition in MTN neurons. On the other hand, when microstimulation was applied in LC every 30 s, an LC neuron repeatedly displayed a transient higher-frequency firing followed by a tonic firing at 5-10 Hz for 30 s. This subsequently caused a similar Hill-type inhibition of Ih in the simultaneously recorded MTN neuron, but with a smaller Hill coefficient, suggesting a lower signal transduction efficacy. In contrast, 20 Hz activity induced by a 1-s pulse applied every 5-10 s caused only a transient facilitation of Ih inhibition followed by a forced termination of Ih inhibition. Thus, the three modes of LC activities modulated the volume transmission to activate α2-adrenergic GPCR to differentially inhibit Ih in MTN neurons.

9.
Methods Mol Biol ; 2463: 251-268, 2022.
Article in English | MEDLINE | ID: mdl-35344180

ABSTRACT

Cell-to-cell interactions between the immune and nervous systems are increasingly recognized for their importance in health and disease. Assessment of cellular neuro-immune interactions can be aided by co-culture of two (or more) cells in an in vitro model system that preserves the morphology of neuronal cells. Here we describe methods to investigate the cytotoxic effector functions of natural killer cells on sensory neurons isolated from syngeneic embryonic and adult mice. We present methods for the morphological analysis of axon fragmentation (pruning) and dynamic cell function via live confocal calcium imaging. These techniques can easily be adapted to study interactions between other combinations of immune cell subsets and neuronal populations.


Subject(s)
Cell Communication , Sensory Receptor Cells , Animals , Axons , Cell Communication/physiology , Coculture Techniques , Killer Cells, Natural , Mice
10.
Neurosci Bull ; 38(4): 373-385, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35294713

ABSTRACT

Mitochondrial reactive oxygen species (mROS) that are overproduced by mitochondrial dysfunction are linked to pathological conditions including sensory abnormalities. Here, we explored whether mROS overproduction induces itch through transient receptor potential canonical 3 (TRPC3), which is sensitive to ROS. Intradermal injection of antimycin A (AA), a selective inhibitor of mitochondrial electron transport chain complex III for mROS overproduction, produced robust scratching behavior in naïve mice, which was suppressed by MitoTEMPO, a mitochondria-selective ROS scavenger, and Pyr10, a TRPC3-specific blocker, but not by blockers of TRPA1 or TRPV1. AA activated subsets of trigeminal ganglion neurons and also induced inward currents, which were blocked by MitoTEMPO and Pyr10. Besides, dry skin-induced chronic scratching was relieved by MitoTEMPO and Pyr10, and also by resveratrol, an antioxidant. Taken together, our results suggest that mROS elicit itch through TRPC3, which may underlie chronic itch, representing a potential therapeutic target for chronic itch.


Subject(s)
Mitochondria , Pruritus , Animals , Antioxidants/pharmacology , Mice , Pruritus/chemically induced , Reactive Oxygen Species/metabolism , TRPA1 Cation Channel
11.
Pain ; 163(8): 1530-1541, 2022 08 01.
Article in English | MEDLINE | ID: mdl-34817438

ABSTRACT

ABSTRACT: Nociceptors are known to directly recognize bacterial cell wall components or secreted toxins, thereby leading to pain induced by bacterial infection. However, direct activation of nociceptors by bacterial metabolites remains unclear although bacteria produce numerous metabolites related to health and disease. In this study, we investigated whether and how a common bacterial metabolite, indole, which is produced by normal microflora of the gastrointestinal tract and oral cavity, can directly activate nociceptive sensory neurons. We found that indole elicits calcium response and evokes inward currents in subsets of dorsal root ganglia (DRG) neurons. Intraplantar (i.pl.) injection of indole produced nocifensive behaviors in adult mice, which were enhanced in complete Freund's adjuvant-induced chronic inflammatory condition. Indole increased calcitonin gene-related peptide release in DRG neurons, and i.pl. injection of indole increased hind paw thickness, suggesting its role in generation of neurogenic inflammation. These in vitro and in vivo indole-induced responses were pharmacologically blocked by transient receptor potential ankyrin 1 (TRPA1) antagonist, HC-030031, and significantly abolished in TRPA1 knockout (KO) mice, indicating that indole targets TRPA1 for its action in DRG neurons. Nocifensive licking behavior induced by the injection of live Escherichia coli was significantly decreased in tryptophanase mutant (TnaA KO) E. coli- injected mice that lack indole production, further supporting the idea that bacteria-derived indole can induce pain during infection. Identifying the mechanism of action of indole through TRPA1 provides insights into bacteria-neuron interactions and the role of bacterial metabolites in pain signaling, especially in inflammation-accompanied bacterial infection.


Subject(s)
Indoles , Nociceptors , TRPA1 Cation Channel , Animals , Escherichia coli/metabolism , Ganglia, Spinal , Indoles/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nociceptors/metabolism , Pain/chemically induced , Pain/metabolism , Sensory Receptor Cells/metabolism , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/genetics
12.
Exp Neurobiol ; 30(5): 329-340, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34737238

ABSTRACT

Pulpitis (toothache) is a painful inflammation of the dental pulp and is a prevalent problem throughout the world. This pulpal inflammation occurs in the cells inside the dental pulp, which have host defense mechanisms to combat oral microorganisms invading the pulp space of exposed teeth. This innate immunity has been well studied, with a focus on Toll-like receptors (TLRs). The function of TLR4, activated by Gram-negative bacteria, has been demonstrated in trigeminal ganglion (TG) neurons for dental pain. Although Gram-positive bacteria predominate in the teeth of patients with caries and pulpitis, the role of TLR2, which is activated by Gram-positive bacteria, is poorly understood in dental primary afferent (DPA) neurons that densely innervate the dental pulp. Using Fura-2 based Ca2+ imaging, we observed reproducible intracellular Ca2+ responses induced by Pam3CSK4 and Pam2CSK4 (TLR2-specific agonists) in TG neurons of adult wild-type (WT) mice. The response was completely abolished in TLR2 knock-out (KO) mice. Single-cell RT-PCR detected Tlr2 mRNA in DPA neurons labeled with fluorescent retrograde tracers from the upper molars. Using the mouse pulpitis model, real-time RT-PCR revealed that Tlr2 and inflammatory-related molecules were upregulated in injured TG, compared to non-injured TG, from WT mice, but not from TLR2 KO mice. TLR2 protein expression was also upregulated in injured DPA neurons, and the change was corresponded with a significant increase in calcitonin gene-related peptide (CGRP) expression. Our results provide a better molecular understanding of pulpitis by revealing the potential contribution of TLR2 to pulpal inflammatory pain.

13.
Neuroreport ; 32(15): 1269-1277, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34494992

ABSTRACT

OBJECTIVES: Feeding behavior is known to have potential to alleviate pain. We recently demonstrated that both 24 h fasting and 2 h refeeding (food intake after 24 h fasting) induce analgesia in inflammatory pain conditions via different brain mechanisms. However, brain structures that distinctly involved fasting- and refeeding-induced analgesia is still unknown. Hence, this study is aimed to reveal brain structures mediating fasting- and refeeding-induced analgesia. METHODS: Mice were given intraplantar (i.pl.) injection of formalin and complete Freund's adjuvant into the left hind paw to induce acute and chronic inflammatory pain, respectively. We examined changes in c-Fos expression with 24 h fasting and 2 h refeeding under acute and chronic inflammatory pain conditions in the contralateral brain. RESULTS: Under acute pain condition, c-Fos expression changed with fasting in the anterior cingulate cortex (ACC), central amygdala (CeA), lateral hypothalamus (LH) and nucleus accumbens core (NAcC). Refeeding changed c-Fos expression in the CeA, LH and lateral parabrachial nucleus (lPBN). On the other hand, under chronic inflammatory pain condition, c-Fos expression changed with fasting in the lPBN, medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAcS) while refeeding changed c-Fos expression in the anterior insular cortex, lPBN, mPFC and NAcS. CONCLUSION: The present results show that brain regions that participated in the fasting- and refeeding-induced analgesia were completely different in acute and chronic inflammatory pain conditions. Also, refeeding recruits more brain regions under chronic inflammatory pain conditions compared to the acute inflammatory pain condition. Collectively, our findings provide novel insights into brain regions involved in fasting- and refeeding-induced analgesia, which can be potential neural circuit-based targets for the development of novel therapeutics.


Subject(s)
Brain/metabolism , Feeding Behavior/physiology , Inflammation/metabolism , Pain/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Animals , Eating/physiology , Inflammation/genetics , Mice , Neurons/metabolism , Pain/genetics
14.
Mol Brain ; 14(1): 99, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183051

ABSTRACT

Activation of spinal cord microglia contributes to the development of peripheral nerve injury-induced neuropathic pain. However, the molecular mechanisms underlying microglial function in neuropathic pain are not fully understood. We identified that the voltage-gated proton channel Hv1, which is functionally expressed in spinal microglia, was significantly increased after spinal nerve transection (SNT). Hv1 mediated voltage-gated proton currents in spinal microglia and mice lacking Hv1 (Hv1 KO) display attenuated pain hypersensitivities after SNT compared with wildtype (WT) mice. In addition, microglial production of reactive oxygen species (ROS) and subsequent astrocyte activation in the spinal cord was reduced in Hv1 KO mice after SNT. Cytokine screening and immunostaining further revealed that IFN-γ expression was compromised in spinal astrocytes in Hv1 KO mice. These results demonstrate that Hv1 proton channel contributes to microglial ROS production, astrocyte activation, IFN-γ upregulation, and subsequent pain hypersensitivities after SNT. This study suggests Hv1-dependent microglia-astrocyte communication in pain hypersensitivities and identifies Hv1 as a novel therapeutic target for alleviating neuropathic pain.


Subject(s)
Astrocytes/pathology , Cell Communication , Ion Channels/metabolism , Microglia/pathology , Neuralgia/etiology , Neuralgia/pathology , Peripheral Nerve Injuries/complications , Animals , Astrocytes/metabolism , Cell Proliferation , Enzyme Activation , Interferon-gamma/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Models, Biological , Reactive Oxygen Species/metabolism , Spinal Cord/pathology , Up-Regulation , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Mol Pain ; 17: 17448069211011326, 2021.
Article in English | MEDLINE | ID: mdl-33906495

ABSTRACT

Microglia activation following peripheral nerve injury has been shown to contribute to central sensitization of the spinal cord for the development of neuropathic pain. In a recent study, we reported that the amount of nerve damage does not necessarily correlate with chronic pain development. Here we compared the response of spinal microglia, using immunohistochemistry as a surrogate of microglial activation, in mice with two different types of crush injury of the sciatic nerve. We confirmed that incomplete crush of the sciatic nerve (partial crush injury, PCI) resulted in tactile hypersensitivity after the recovery of sensory function (15 days after surgery), whereas the hypersensitivity was not observed after the complete crush (full crush injury, FCI). We observed that immunoreactivity for Iba-1, a microglial marker, was greater in the ipsilateral dorsal horn of lumbar (L4) spinal cord of mice 2 days after FCI compared to PCI, positively correlating with the intensity of crush injury. Ipsilateral Iba-1 reactivity was comparable between injuries at 7 days with a significant increase compared to the contralateral side. By day 15 after injury, ipsilateral Iba-1 immunoreactivity was much reduced compared to day 7 and was not different between the groups. Our results suggest that the magnitude of the early microgliosis is dependent on injury severity, but does not necessarily correlate with the long-term development of chronic pain-like hypersensitivity after peripheral nerve injury.


Subject(s)
Gliosis/physiopathology , Hyperalgesia/physiopathology , Microglia/physiology , Neuralgia/physiopathology , Peripheral Nerve Injuries/physiopathology , Sciatic Nerve/injuries , Spinal Cord/physiopathology , Animals , Gliosis/complications , Hyperalgesia/etiology , Mice , Nerve Crush , Neuralgia/etiology , Peripheral Nerve Injuries/complications , Sciatic Nerve/physiopathology
16.
Brain Res ; 1762: 147445, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33766518

ABSTRACT

Opioids, which are widely used for the treatment of chronic pain, have an analgesic effect by mainly activating mu-opioid receptor (MOR). Paradoxically, a high dose of naloxone, non-selective opioid receptor antagonist, is also known to induce analgesia, but the underlying mechanism remains unclear. Since kappa-opioid receptor (KOR) and dynorphin (KOR ligand) have been implicated in the naloxone-induced analgesia, we aimed to elucidate its mechanism by focusing on the kappa-opioid system in the brain under inflammatory pain condition. Systemic administration of naloxone (10 mg/kg, i.p.) decreased spontaneous pain behaviors only in complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model but not in the formalin-induced acute pain model. Immunohistochemistry analysis in the CFA model revealed both a significant decrease in MOR expression and an increase in prodynorphin density in the central nucleus of theamygdala (CeA) and nucleus accumbens (NAc) but not in other brain areas. Systemic administration of KOR antagonist (norbinaltorphimine, nor-BNI 10 mg/kg) also decreased spontaneous pain behaviors in the CFA model. Furthermore, microinjection of both naloxone and nor-BNI into NAc and CeA significantly reduced spontaneous chronic pain behavior. Taken together, our results suggest that naloxone-induced analgesia may be mediated by blocking facilitated kappa-opioid systems in the NAc and CeA.


Subject(s)
Analgesia/methods , Analgesics, Opioid/administration & dosage , Chronic Pain/metabolism , Inflammation Mediators/metabolism , Naloxone/administration & dosage , Receptors, Opioid, kappa/metabolism , Animals , Chronic Pain/chemically induced , Chronic Pain/drug therapy , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Microinjections , Naltrexone/administration & dosage , Naltrexone/analogs & derivatives , Narcotic Antagonists/administration & dosage , Receptors, Opioid, kappa/antagonists & inhibitors
17.
Eur J Pharmacol ; 899: 174029, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33727053

ABSTRACT

The recently identified molecule P7C3 has been highlighted in the field of pain research. We examined the effect of intrathecal P7C3 in tissue injury pain evoked by formalin injection and determined the role of the GABA system in the activity of P7C3 at the spinal level. Male Sprague-Dawley rats with intrathecal catheters implanted for experimental drug delivery were studied. The effects of intrathecal P7C3 and nicotinamide phosphoribosyltransferase (NAMPT) administered 10 min before the formalin injection were examined. Animals were pretreated with bicuculline, a GABA-A receptor antagonist; saclofen, a GABA-B receptor antagonist; L-allylglycine, a glutamic acid decarboxylase (GAD) blocker; and CHS 828, an NAMPT inhibitor; to observe involvement in the effects of P7C3. The effects of P7C3 alone and the mixture of P7C3 with GABA receptor antagonists on KCl-induced calcium transients were examined in rat dorsal root ganglion (DRG) neurons. The expression of GAD and the concentration of GABA in the spinal cord were evaluated. Intrathecal P7C3 and NAMPT produced an antinociceptive effect in the formalin test. Intrathecal bicuculline, saclofen, L-allylglycine, and CHS 828 reversed the antinociception of P7C3 in both phases. P7C3 decreased the KCl-induced calcium transients in DRG neurons. Both bicuculline and saclofen reversed the blocking effect of P7C3. The levels of GAD expression and GABA concentration decreased after formalin injection and were increased by P7C3. These results suggest that P7C3 increases GAD activity and then increases the GABA concentration in the spinal cord, which in turn may act on GABA receptors causing the antinociceptive effect against pain evoked by formalin injection.


Subject(s)
Analgesics/administration & dosage , Carbazoles/administration & dosage , Nociceptive Pain/drug therapy , Pain Threshold/drug effects , Spinal Cord/drug effects , gamma-Aminobutyric Acid/metabolism , Animals , Calcium Signaling , Disease Models, Animal , Formaldehyde , Glutamate Decarboxylase/metabolism , Inflammation/chemically induced , Injections, Spinal , Male , Nociceptive Pain/etiology , Nociceptive Pain/metabolism , Nociceptive Pain/physiopathology , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/physiopathology
18.
Mol Pain ; 16: 1744806920969476, 2020.
Article in English | MEDLINE | ID: mdl-33121353

ABSTRACT

The endocannabinoid system (ECS) is known to modulate not only food intake but also pain, especially via the cannabinoid type 1 receptor (CB1R) expressed throughout the central nervous system and the peripheral tissues. Our previous study demonstrated that fasting produces an analgesic effect in adult male mice, which is reversed by intraperitoneal (i.p.) administration of CB1R antagonist (SR 141716). In the present study, we further examined the effect of CB1R expressed in the peripheral tissues. In the formalin-induced inflammatory pain model, i.p. administration of peripherally restricted CB1R antagonist (AM 6545) reversed fasting-induced analgesia. However, intraplantar administration of SR 141716 did not affect fasting-induced analgesia. Furthermore, mRNA expression of CB1R did not change in the formalin model by fasting in the dorsal root ganglia. The formalin-induced c-Fos expression at the spinal cord level was not affected by fasting, and in vivo recording from the superficial dorsal horn of the lumbar spinal cord revealed that fasting did not affect formalin-induced neural activity, which indicates minimal involvement of the spinal cord in fasting-induced analgesia. Finally, when we performed subdiaphragmatic vagotomy to block the hunger signal from the gastrointestinal (GI) system, AM 6545 did not affect fasting-induced analgesia, but SR 141716 still reversed fasting-induced analgesia. Taken together, our results suggest that both peripheral and central CB1Rs contribute to fasting-induced analgesic effects and the CB1Rs in the GI system which transmit fasting signals to the brain, rather than those in the peripheral sensory neurons, may contribute to fasting-induced analgesic effects.


Subject(s)
Analgesia/methods , Cannabinoid Receptor Antagonists/pharmacology , Fasting/physiology , Pain Management/methods , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Rimonabant/pharmacology , Animals , Disease Models, Animal , Formaldehyde/toxicity , Ganglia, Spinal/metabolism , Gastrointestinal Tract/physiology , Immunohistochemistry , Inflammation/chemically induced , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Real-Time Polymerase Chain Reaction , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Vagotomy
19.
Arch Oral Biol ; 118: 104864, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32847753

ABSTRACT

OBJECTIVE: Odontoblasts, which consist the outermost compartment of the dental pulp, are primarily engaged in dentin formation. Earlier evidence suggests that voltage-gated calcium channels, such as the high voltage-activated L-type calcium channels, serve as a calcium entry route to mediate dentin formation in odontoblasts. However, the involvement of other voltage-gated calcium channels in regulating intracellular Ca2+ remain unanswered. DESIGN: The expression of voltage-gated calcium channel subtypes of the P/Q- (CaV2.1), N-(CaV2.2), R- (CaV2.3), and T- (CaV3.1-3.3) type were screened in adult rat odontoblasts by single cell RT-PCR. Among these candidates, immunopositivity against CaV3.1 was examined in the odontoblastic layer in teeth sections and dissociated odontoblasts. To confirm the functional expression of CaV3.1 in odontoblasts, intracellular Ca2+ increase in response to membrane depolarization was monitored with Fura-2-based ratiometric calcium imaging. RESULTS: Among the candidate calcium channels, we found that mRNA for CaV3.1 is mainly detected in odontoblasts, with its expression being detected in the odontoblastic layer and dissociated odontoblasts. High extracellular K+-induced membrane depolarization was inhibited by pharmacological blockers for T-type calcium channels such as amiloride or ML218. CONCLUSION: Our results demonstrate that among P/Q-, N-, R-, and T-type calcium channels, CaV3.1 is mainly expressed in odontoblasts to mediate intracellular Ca2+ signaling in response to membrane depolarization. These findings suggest that CaV3.1 may facilitate intracellular Ca2+ dynamics especially in the range of subliminal depolarizations near resting membrane potentials where other high voltage-gated calcium channels such as the L-type are likely to be inactive.


Subject(s)
Calcium Channels, T-Type , Calcium Signaling , Odontoblasts , Animals , Calcium/metabolism , Calcium Channels, T-Type/metabolism , Cells, Cultured , Fura-2 , Odontoblasts/metabolism , Rats
20.
Front Neurosci ; 14: 142, 2020.
Article in English | MEDLINE | ID: mdl-32153361

ABSTRACT

Cytotoxicity and consequent cell death pathways are a critical component of the immune response to infection, disease or injury. While numerous examples of inflammation causing neuronal sensitization and pain have been described, there is a growing appreciation of the role of cytotoxic immunity in response to painful nerve injury. In this review we highlight the functions of cytotoxic immune effector cells, focusing in particular on natural killer (NK) cells, and describe the consequent action of these cells in the injured nerve as well as other chronic pain conditions and peripheral neuropathies. We describe how targeted delivery of cytotoxic factors via the immune synapse operates alongside Wallerian degeneration to allow local axon degeneration in the absence of cell death and is well-placed to support the restoration of homeostasis within the nerve. We also summarize the evidence for the expression of endogenous ligands and receptors on injured nerve targets and infiltrating immune cells that facilitate direct neuro-immune interactions, as well as modulation of the surrounding immune milieu. A number of chronic pain and peripheral neuropathies appear comorbid with a loss of function of cellular cytotoxicity suggesting such mechanisms may actually help to resolve neuropathic pain. Thus while the immune response to peripheral nerve injury is a major driver of maladaptive pain, it is simultaneously capable of directing resolution of injury in part through the pathways of cellular cytotoxicity. Our growing knowledge in tuning immune function away from inflammation toward recovery from nerve injury therefore holds promise for interventions aimed at preventing the transition from acute to chronic pain.

SELECTION OF CITATIONS
SEARCH DETAIL
...