Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1192235, 2023.
Article in English | MEDLINE | ID: mdl-37636096

ABSTRACT

Metabolomics refers to the technology for the comprehensive analysis of metabolites and low-molecular-weight compounds in a biological system, such as cells or tissues. Metabolites play an important role in biological phenomena through their direct involvement in the regulation of physiological mechanisms, such as maintaining cell homeostasis or signal transmission through protein-protein interactions. The current review aims provide a framework for how the integrated analysis of metabolites, their functional actions and inherent biological information can be used to understand biological phenomena related to the regulation of metabolites and how this information can be applied to safety assessments of crops created using biotechnology. Advancement in technology and analytical instrumentation have led new ways to examine the convergence between biology and chemistry, which has yielded a deeper understanding of complex biological phenomena. Metabolomics can be utilized and applied to safety assessments of biotechnology products through a systematic approach using metabolite-level data processing algorithms, statistical techniques, and database development. The integration of metabolomics data with sequencing data is a key step towards improving additional phenotypical evidence to elucidate the degree of environmental affects for variants found in genome associated with metabolic processes. Moreover, information analysis technology such as big data, machine learning, and IT investment must be introduced to establish a system for data extraction, selection, and metabolomic data analysis for the interpretation of biological implications of biotechnology innovations. This review outlines the integrity of metabolomics assessments in determining the consequences of genetic engineering and biotechnology in plants.

2.
GM Crops Food ; 12(1): 303-314, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33648419

ABSTRACT

The safety of transgenic Bt rice containing bacteria-derived mCry1Ac gene from Bacillus thuringiensis (Bt) was assessed by conducting field trials at two locations for two consecutive years in South Korea, using the near-isogenic line comparator rice cultivar ('Ilmi', non-Bt rice) and four commercial cultivars as references. Compositional analyses included measurement of proximates, minerals, amino acids, fatty acids, vitamins, and antinutrients. Significant differences between Bt rice and non-Bt rice were detected; however, all differences were within the reference range. The statistical analyses, including analysis of % variability, analysis of similarities (ANOISM), similarity percentage (SIMPER) analysis, and permutational multivariate analysis of variance (PERMANOVA) were performed to study factors contributing to compositional variability. The multivariate analyses revealed that environmental factors more influenced rice components' variability than by genetic factors. This approach was shown to be a powerful method to provide meaningful evaluations between Bt rice and its comparators. In this study, Bt rice was proved to be compositionally equivalent to conventional rice varieties through multiple statistical methods.


Subject(s)
Bacillus thuringiensis , Oryza , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Insecta , Oryza/genetics , Plants, Genetically Modified/genetics , Republic of Korea
3.
J Sci Food Agric ; 101(6): 2601-2613, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33336790

ABSTRACT

BACKGROUND: PfFAD3 transgenic soybean expressing omega-3 fatty acid desaturase 3 of Physaria produces increased level of α-linolenic acid in seed. Composition data of non-transgenic conventional varieties is important in the safety assessment of the genetically-modified (GM) crops in the context of the natural variation. RESULTS: The natural variation was characterized in seed composition of 13 Korean soybean varieties grown in three locations in South Korea for 2 years. Univariate analysis of combined data showed significant differences by variety and cultivation environment for proximates, minerals, anti-nutrients, and fatty acids. Percent variability analysis demonstrated that genotype, environment and the interaction of environment with genotype contributed to soybean seed compositions. Principal component analysis and orthogonal projections to latent structure discriminant analysis indicated that significant variance in compositions was attributable to location and cultivation year. The composition of three PfFAD3 soybean lines for proximates, minerals, anti-nutrients, and fatty acids was compared to a non-transgenic commercial comparator (Kwangankong, KA), and three non-transgenic commercial varieties grown at two sites in South Korea. Only linoleic and linolenic acids significantly differed in PfFAD3-1 lines compared to KA, which were expected changes by the introduction of the PfFAD3-1 trait in KA. CONCLUSION: Genotype, environment, and the interaction of environment with genotype contributed to compositional variability in soybean. PfFAD3-1 soybean is equivalent to the conventional varieties with respect to these components. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Brassicaceae/enzymology , Fatty Acid Desaturases/genetics , Glycine max/chemistry , Glycine max/genetics , Plant Proteins/genetics , Plants, Genetically Modified/chemistry , Amino Acids/analysis , Amino Acids/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Minerals/analysis , Minerals/metabolism , Nutritive Value , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Republic of Korea , Glycine max/classification , Glycine max/metabolism
4.
Food Sci Nutr ; 7(1): 163-172, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30680170

ABSTRACT

This study was investigated to compare the natural variation of nutrients in rice variety by different environmental factors. Fifteen kinds of rices were used, which were cultivated in two locations for 2 years. All data were analyzed by the various statistical tools to identify the nutritional variations of nutrients. The results of variable importance in the prediction analysis were found to be consistent with the % variability. The nutrient compositions most affected by variety were fatty acids, and next were vitamins, proximate nutrients, minerals, and amino acids in order. The nutrient compositions most affected by location were proximate, followed by minerals, vitamins, fatty acids, and amino acids. For cultivation year, vitamins were most affected and then minerals, fatty acids, proximate nutrients, and amino acids in order. These findings could explain that each kind of nutrients can be naturally varied by different environmental factors.

5.
Front Plant Sci ; 10: 1812, 2019.
Article in English | MEDLINE | ID: mdl-32082356

ABSTRACT

Soybean is a major crop that is used as a source of vegetable oil for human use. To develop transgenic soybean with high α-linolenic acid (ALA; 18:3) content, the FAD3-1 gene isolated from lesquerella (Physaria fendleri) was used to construct vectors with two different seed-specific promoters, soybean ß-conglycinin (Pß-con) and kidney bean phaseolin (Pphas), and one constitutive cauliflower mosaic virus 35S promoter (P35S). The corresponding vectors were used for Agrobacterium-mediated transformation of imbibed mature half seeds. The transformation efficiency was approximately 2%, 1%, and 3% and 21, 7, and 17 transgenic plants were produced, respectively. T-DNA insertion and expression of the transgene were confirmed from most of the transgenic plants by polymerase chain reaction (PCR), quantitative real-time PCR (qPCR), reverse transcription PCR (RT-PCR), and Southern blot analysis. The fatty acid composition of soybean seeds was analyzed by gas chromatography. The 18:3 content in the transgenic generation T1 seeds was increased 7-fold in Pß-con:PfFAD3-1, 4-fold in Pphas : PfFAD3-1, and 1.6-fold in P35S:PfFAD3-1 compared to the 18:3 content in soybean "Kwangankong". The increased content of 18:3 in the Pß-con:PfFAD3-1 soybean (T1) resulted in a 52.6% increase in total fatty acids, with a larger decrease in 18:1 content than 18:2 content. The increase in 18:3 content was also maintained and reached 42% in the Pphas : PfFAD3-1 transgenic generation T2. Investigations of the agronomic traits of 12 Pß-con:PfFAD3-1 transgenic lines (T1) revealed that plant height, number of branches, nodes, pods, total seeds, and total seed weight were significantly higher in several transgenic lines than those in non-transgenic soybean. Especially, an increase in seed size was observed upon expression of the PfFAD3-1 gene with the ß-conglycinin promoter, and 6%-14% higher seed lengths were measured from the transgenic lines.

6.
J Med Food ; 20(1): 19-29, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28098517

ABSTRACT

This study was performed to investigate the effects of Crataegi fructus ethanol extracts (CFEEs) on the differentiation of 3T3-L1 cells, and to evaluate the effects of C. fructus powder (CFP) on lipid metabolism and its antiobesity effect in rats fed a high-fat and high-cholesterol (HFC) diet. Both in vitro and in vivo studies were performed for physiological activity and antiobesity effects on the serum, liver, and adipose tissues in obesity-induced rats. CFEEs showed significant inhibitory action on differentiation and triglyceride (TG) accumulation in 3T3-L1 mature cells in a dose-dependent manner. Subcutaneous, mesenteric, epididymal, and total adipose tissue weights of HFC diet group were heavier than those of normal diet (N) group, whereas those of groups fed CFP were significantly decreased. Levels of serum TGs, total cholesterol (TC), and low-density lipoprotein cholesterol were significantly decreased in the CFP groups than in the HFC group, whereas the serum high-density lipoprotein cholesterol level decreased in the HFC group and markedly increased in the CFP groups. TC and TG levels in the liver and adipose tissues were significantly lower in CFP groups than in the HFC groups. In addition, feeding with CFP significantly reduced the occurrence of fatty liver deposits and steatosis, and inhibited an HFC diet-induced increase in adipocyte size. These results suggest that C. fructus may improve lipid metabolism in the serum, liver, and adipose tissue, and may potentially reduce lipid storage.


Subject(s)
Adipocytes/metabolism , Anti-Obesity Agents/administration & dosage , Cholesterol/metabolism , Crataegus/chemistry , Obesity/drug therapy , Plant Extracts/administration & dosage , 3T3-L1 Cells , Adipocytes/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Cholesterol/analysis , Diet, High-Fat/adverse effects , Humans , Liver/drug effects , Liver/metabolism , Male , Mice , Obesity/metabolism , Rats , Rats, Sprague-Dawley , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...