Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Life Sci ; 350: 122782, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38848941

ABSTRACT

Acetaminophen (APAP), a widely used pain and fever reliever, is a major contributor to drug-induced liver injury, as its toxic metabolites such as NAPQI induce oxidative stress and hepatic necrosis. While N-acetylcysteine serves as the primary treatment for APAP-induced liver injury (AILI), its efficacy is confined to a narrow window of 8-24 h post-APAP overdose. Beyond this window, liver transplantation emerges as the final recourse, prompting ongoing research to pinpoint novel therapeutic targets aimed at enhancing AILI treatment outcomes. Nerve injury-induced protein 1 (Ninjurin1; Ninj1), initially recognized as an adhesion molecule, has been implicated in liver damage stemming from factors like TNFα and ischemia-reperfusion. Nonetheless, its role in oxidative stress-related liver diseases, including AILI, remains unexplored. In this study, we observed up-regulation of Ninj1 expression in the livers of both human DILI patients and the AILI mouse model. Through the utilization of Ninj1 null mice, hepatocyte-specific Ninj1 KO mice, and myeloid-specific Ninj1 KO mice, we unveiled that the loss of Ninj1 in hepatocytes, rather than myeloid cells, exerts alleviative effects on AILI irrespective of sex dependency. Further in vitro experiments demonstrated that Ninj1 deficiency shields hepatocytes from APAP-induced oxidative stress, mitochondrial dysfunctions, and cell death by bolstering NRF2 stability via activation of AMPKα. In summary, our findings imply that Ninj1 likely plays a role in AILI, and its deficiency confers protection against APAP-induced hepatotoxicity through the AMPKα-NRF2 pathway.


Subject(s)
AMP-Activated Protein Kinases , Acetaminophen , Cell Adhesion Molecules, Neuronal , Chemical and Drug Induced Liver Injury , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2 , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , AMP-Activated Protein Kinases/metabolism , Humans , Male , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Signal Transduction/drug effects , Oxidative Stress/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Female , Nerve Growth Factors
2.
J Phys Chem Lett ; 15(24): 6451-6457, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38869084

ABSTRACT

In the recent era of green and sustainable energy, the demand for effective and efficient energy harvesting has dramatically increased. Piezoelectric energy harvesting, which converts mechanical energy into electrical energy, is considered a viable strategy to achieve this goal. Janus-type nanomaterial, a noncentrosymmetric material with different elemental species in the upper and lower atomic layers, has gained interest due to its exotic properties compared to conventional bulk and symmetric materials. In this work, we systematically design and investigate a new class of Janus nanomaterials with enhanced intrinsic polarization via the successive ionic exchange method. Multiple layers of stability standards, including both thermodynamic and dynamic stabilities, are employed in the high-throughput screening procedure of novel Janus-type nanomaterials. The newly proposed Janus-type nanomaterials exhibit more than 10 times higher piezoelectric response compared to that of reported low-dimensional materials and even comparable to that of bulk materials.

3.
ACS Nano ; 18(5): 4559-4569, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38264984

ABSTRACT

The oxidation of copper and its surface oxides are gaining increasing attention due to the enhanced CO2 reduction reaction (CO2RR) activity exhibited by partially oxidized copper among the copper-based catalysts. The "8" surface oxide on Cu(111) is seen as a promising structure for further study due to its resemblance to the highly active Cu2O(110) surface in the C-C coupling of the CO2RR, setting it apart from other O/Cu(111) surface oxides resembling Cu2O(111). However, recent X-ray photoelectron spectroscopy analysis challenges the currently accepted atomic structure of the "8" surface oxide, prompting a need for reevaluation. This study highlights the limitations of conventional methods when addressing such challenges, leading us to adopt global optimization search techniques. After a rigorous process to ensure robustness, the unbiased global minimum of the "8" surface oxide is identified. Interestingly, this configuration differs significantly from other surface oxides and also from previous "8" models while retaining similarities to the Cu2O(110) surface.

4.
Toxins (Basel) ; 15(10)2023 09 23.
Article in English | MEDLINE | ID: mdl-37888618

ABSTRACT

Okadaic acid (OA) and its analogues cause diarrhetic shellfish poisoning (DSP) in humans, and risk assessments of these toxins require toxicity equivalency factors (TEFs), which represent the relative toxicities of analogues. However, no human death by DSP toxin has been reported, and its current TEF value is based on acute lethality. To properly reflect the symptoms of DSP, such as diarrhea without death, the chronic toxicity of DSP toxins at sublethal doses should be considered. In this study, we obtained acute oral LD50 values for OA and dinophysistoxin-1 (DTX-1) (1069 and 897 µg/kg, respectively) to set sublethal doses. Mice were treated with sublethal doses of OA and DTX-1 for 7 days. The mice lost body weight, and the disease activity index and intestinal crypt depths increased. Furthermore, these changes were more severe in OA-treated mice than in the DTX-1-treated mice. Strikingly, ascites was observed, and its severity was greater in mice treated with OA. Our findings suggest that OA is at least as toxic as DTX-1 after repeated oral administration at a low dose. This is the first study to compare repeated oral dosing of DSP toxins. Further sub-chronic and chronic studies are warranted to determine appropriate TEF values for DSP toxins.


Subject(s)
Shellfish Poisoning , Humans , Animals , Mice , Okadaic Acid/toxicity , Lethal Dose 50 , Diarrhea , Pyrans/toxicity
5.
ACS Appl Mater Interfaces ; 15(33): 39614-39624, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37556112

ABSTRACT

Bioelectronic devices that offer real-time measurements, biological signal processing, and continuous monitoring while maintaining stable performance are in high demand. The materials used in organic electrochemical transistors (OECTs) demonstrate high transconductance (GM) and excellent biocompatibility, making them suitable for bioelectronics in a biological environment. However, ion migration in OECTs induces a delayed response time and low cut-off frequency, and the adverse biological environment causes OECT durability problems. Herein, we present OECTs with a faster response time and improved durability, made possible by using a nanofiber mat channel of a conventional OECT structure. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/polyacrylamide (PAAm) nanofiber mat channel OECTs are fabricated and subjected to various durability tests for the first time based on continuous measurements and mechanical stability assessments. The results indicate that the nanofiber mat channel OECTs have a faster response time and longer life spans compared to those of film channel OECTs. The improvements can be attributed to the increased surface area and fibrous structure of the nanofiber mat channel. Furthermore, the hydrogel helps to maintain the structure of the nanofiber, facilitates material exchange, and eliminates the need for a crosslinker.

6.
Redox Biol ; 64: 102783, 2023 08.
Article in English | MEDLINE | ID: mdl-37348157

ABSTRACT

Oxidative stress due to abnormal accumulation of reactive oxygen species (ROS) is an initiator of a large number of human diseases, and thus, the elimination and prevention of excessive ROS are important aspects of preventing the development of such diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is an essential transcription factor that defends against oxidative stress, and its function is negatively controlled by Kelch-like ECH-associated protein 1 (KEAP1). Therefore, activating NRF2 by inhibiting KEAP1 is viewed as a strategy for combating oxidative stress-related diseases. Here, we generated a cereblon (CRBN)-based proteolysis-targeting chimera (PROTAC), which we named SD2267, that induces the proteasomal degradation of KEAP1 and leads to NRF2 activation. As was intended, SD2267 bound to KEAP1, recruited CRBN, and induced the degradation of KEAP1. Furthermore, the KEAP1 degradation efficacy of SD2267 was diminished by MG132 (a proteasomal degradation inhibitor) but not by chloroquine (an autophagy inhibitor), which suggested that KEAP1 degradation by SD2267 was proteasomal degradation-dependent and autophagy-independent. Following KEAP1 degradation, SD2267 induced the nuclear translocation of NRF2, which led to the expression of NRF2 target genes and attenuated ROS accumulation induced by acetaminophen (APAP) in hepatocytes. Based on in vivo pharmacokinetic study, SD2267 was injected intraperitoneally at 1 or 3 mg/kg in APAP-induced liver injury mouse model. We observed that SD2267 degraded hepatic KEAP1 and attenuated APAP-induced liver damage. Summarizing, we described the synthesis of a KEAP1-targeting PROTAC (SD2267) and its efficacy and mode of action in vitro and in vivo. The results obtained suggest that SD2267 could be used to treat hepatic diseases related to oxidative stress.


Subject(s)
Acetaminophen , Antioxidants , Mice , Animals , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Reactive Oxygen Species/metabolism , Proteolysis , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology
7.
Lab Anim Res ; 39(1): 8, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37161442

ABSTRACT

BACKGROUND: The Omicron variant has become the most prevalent SARS-CoV-2 variant. Omicron is known to induce milder lesions compared to the original Wuhan strain. Fatal infection of the Wuhan strain into the brain has been well documented in COVID-19 mouse models and human COVID-19 cases, but apparent infections into the brain by Omicron have not been reported in human adult cases or animal models. In this study, we investigated whether Omicron could spread to the brain using K18-hACE2 mice susceptible to SARS-CoV-2 infection. RESULTS: K18-hACE2 mice were intranasally infected with 1 × 105 PFU of the original Wuhan strain and the Omicron variant of SARS-CoV-2. A follow-up was conducted 7 days post infection. All Wuhan-infected mice showed > 20% body weight loss, defined as the lethal condition, whereas two out of five Omicron-infected mice (40%) lost > 20% body weight. Histopathological analysis based on H&E staining revealed inflammatory responses in the brains of these two Omicron-infected mice. Immunostaining analysis of viral nucleocapsid protein revealed severe infection of neuron cells in the brains of these two Omicron-infected mice. Lymphoid depletion and apoptosis were observed in the spleen of Omicron-infected mice with brain infection. CONCLUSION: Lethal conditions, such as severe body weight loss and encephalopathy, can occur in Omicron-infected K18-hACE2 mice. Our study reports, for the first time, that Omicron can induce brain infection with lymphoid depletion in the mouse COVID-19 model.

8.
Sci Rep ; 13(1): 3556, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864088

ABSTRACT

Bioluminescence imaging is useful for non-invasively monitoring inflammatory reactions associated with disease progression, and since NF-κB is a pivotal transcription factor that alters expressions of inflammatory genes, we generated novel NF-κB luciferase reporter (NF-κB-Luc) mice to understand the dynamics of inflammatory responses in whole body, and also in various type of cells by crossing NF-κB-Luc mice with cell-type specific Cre expressing mice (NF-κB-Luc:[Cre]). Bioluminescence intensity was significantly increased in NF-κB-Luc (NKL) mice exposed to inflammatory stimuli (PMA or LPS). Crossing NF-κB-Luc mice with Alb-cre mice or Lyz-cre mice generated NF-κB-Luc:Alb (NKLA) and NF-κB-Luc:Lyz2 (NKLL) mice, respectively. NKLA and NKLL mice showed enhanced bioluminescence in liver and macrophages, respectively. To confirm that our reporter mice could be utilized for the non-invasive monitoring of inflammation in preclinical models, we conducted a DSS-induced colitis model and a CDAHFD-induced NASH model in our reporter mice. In both models, our reporter mice reflected the development of these diseases over time. In conclusion, we believe that our novel reporter mouse can be utilized as a non-invasive monitoring platform for inflammatory diseases.


Subject(s)
Colitis , NF-kappa B , Animals , Mice , Disease Progression , Inflammation , Liver
9.
Microbiome ; 10(1): 238, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36567320

ABSTRACT

BACKGROUND: Aging is a natural process that an organism gradually loses its physical fitness and functionality. Great efforts have been made to understand and intervene in this deteriorating process. The gut microbiota affects host physiology, and dysbiosis of the microbial community often underlies the pathogenesis of host disorders. The commensal microbiota also changes with aging; however, the interplay between the microbiota and host aging remains largely unexplored. Here, we systematically examined the ameliorating effects of the gut microbiota derived from the young on the physiology and phenotypes of the aged. RESULTS: As the fecal microbiota was transplanted from young mice at 5 weeks after birth into 12-month-old ones, the thickness of the muscle fiber and grip strength were increased, and the water retention ability of the skin was enhanced with thickened stratum corneum. Muscle thickness was also marginally increased in 25-month-old mice after transferring the gut microbiota from the young. Bacteria enriched in 12-month-old mice that received the young-derived microbiota significantly correlated with the improved host fitness and altered gene expression. In the dermis of these mice, transcription of Dbn1 was most upregulated and DBN1-expressing cells increased twice. Dbn1-heterozygous mice exhibited impaired skin barrier function and hydration. CONCLUSIONS: We revealed that the young-derived gut microbiota rejuvenates the physical fitness of the aged by altering the microbial composition of the gut and gene expression in muscle and skin. Dbn1, for the first time, was found to be induced by the young microbiota and to modulate skin hydration. Our results provide solid evidence that the gut microbiota from the young improves the vitality of the aged. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Mice , Animals , Gastrointestinal Microbiome/physiology , Aging/physiology , Fecal Microbiota Transplantation , Physical Fitness , Mice, Inbred C57BL
10.
J Cell Mol Med ; 26(20): 5122-5134, 2022 10.
Article in English | MEDLINE | ID: mdl-36071453

ABSTRACT

Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D-galactosamine (D-gal)-induced acute liver failure (ALF) model. When treated with LPS/D-gal, conventional Ninj1 knock-out (KO) mice exhibited a mild inflammatory phenotype as compared with wild-type (WT) mice. Unexpectedly, myeloid-specific Ninj1 KO mice showed no attenuation of LPS/D-gal-induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF-α-induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock-down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF-α-mediated apoptosis. Consistent with in vitro results, hepatocyte-specific ablation of Ninj1 in mice alleviated LPS/D-gal-induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D-gal-induced ALF by alleviating TNF-α/TNFR1-induced cell death.


Subject(s)
Cell Adhesion Molecules, Neuronal , Galactosamine , Liver Failure, Acute , Nerve Growth Factors , Animals , Apoptosis , Caspases/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Endothelial Cells/metabolism , Hepatocytes/metabolism , Humans , Lipopolysaccharides , Liver/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/genetics , Liver Failure, Acute/metabolism , Mice , Mice, Knockout , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
11.
BMB Rep ; 55(7): 360, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35892132

ABSTRACT

[Erratum to: BMB Reports 2022; 55(4): 187-191, PMID: 35000670, PMCID: PMC9058471] The BMB Reports would like to correct in BMB Rep. 55(4):187-191, titled "Exercise-induced beige adipogenesis of iWAT in Cidea reporter mice". This research was supported by the Research Institute for Veterinary Science, Seoul National University. Since grant name and number are incorrect, this information has now been corrected as follows: This research was supported by Korea Mouse Phenotyping Project (2013M3A9D5072550) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT and partially supported by the Brain Korea 21 Plus Program and the Research Institute for Veterinary Science of Seoul National University. The authors apologize for any inconvenience or confusion that may be caused by this error. The ACKNOWLEDGEMENTS of Original PDF version have been corrected.

12.
Nutrients ; 14(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35807849

ABSTRACT

Evidence suggests that diets with high pro-inflammatory potential may play a substantial role in the origin of gastric inflammation. This study aimed to examine the association between the energy-adjusted dietary inflammatory index (E-DIITM) and gastric diseases at baseline and after a mean follow-up of 7.4 years in a Korean population. A total of 144,196 participants from the Korean Genome and Epidemiology Study_Health Examination (KoGES_HEXA) cohort were included. E-DII scores were computed using a validated semi-quantitative food frequency questionnaire. Multivariate logistic regression and Cox proportional hazards regression were used to assess the association between the E-DII and gastric disease risk. In the prospective analysis, the risk of developing gastric disease was significantly increased among individuals in the highest quartile of E-DII compared to those in the lowest quartile (HRquartile4vs1 = 1.22; 95% CI = 1.08-1.38). Prospective analysis also showed an increased risk in the incidence of gastritis (HRquartile4vs1 = 1.19; 95% CI = 1.04-1.37), gastric ulcers (HRquartile4vs1 = 1.47; 95% CI = 1.16-1.85), and gastric and duodenal ulcers (HRquartile4vs1 = 1.46; 95% CI = 1.17-1.81) in the highest E-DII quartile compared to the lowest quartile. In the cross-sectional analysis, the E-DII score was not associated with the risk of gastric disease. Our results suggest that a pro-inflammatory diet, indicated by high E-DII scores, is prospectively associated with an increased risk of gastric diseases. These results highlight the significance of an anti-inflammatory diet in lowering the risk of gastric disease risk in the general population.


Subject(s)
Inflammation , Stomach Diseases , Cohort Studies , Cross-Sectional Studies , Diet/adverse effects , Humans , Inflammation/diagnosis , Inflammation/epidemiology , Republic of Korea/epidemiology , Risk Factors
13.
Lab Anim Res ; 38(1): 24, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35897051

ABSTRACT

Rabbits are being increasingly used as companion animals, and in research; thus, the need for proper veterinary care for rabbits has increased. Surgical access is more challenging in rabbits under inhalation anesthesia compared to other animals, such as dogs and cats. Rabbits have a very narrow and deep oral cavity, large incisors, and a large tongue. Moreover, their temporomandibular joint has limited mobility, making it more difficult to approach the larynx. Various methods have been proposed to overcome this difficulty. The video laryngoscope was introduced in 1999 and is useful when airway intubation is unsuccessful using a conventional laryngoscope. We postulated that a video laryngoscope with a modified size 1 Macintosh blade (McGrath MAC Video Laryngoscope, Medtronic, USA) would facilitate the intubation of New Zealand White rabbits. Sixteen specific-pathogen-free male New Zealand White rabbits weighing 3.45-4.70 kg were studied. All rabbits were intubated using the video laryngoscope. Typically, a 3.0 mm endotracheal tube was used for rabbits weighing < 4 kg, while a 3.5 mm tube was used in those weighing > 4 kg. During surgery, anesthesia was well maintained, and there were no major abnormalities in the animals' conditions. No rabbit developed breathing difficulties or anorexia after recovering from anesthesia. We established an intubation method using a video laryngoscope with a modified blade and stylet in the supine (ventrodorsal) position and successfully applied it in 16 rabbits. It is useful for training novices and for treating rabbits in veterinary hospitals with few staff members and animal research facilities where there are insufficient human resources.

14.
J Ethnopharmacol ; 294: 115370, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35568114

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pharbitis nil (L.) Choisy is a medicinal herb, and herbal remedies based on its seeds have been used to treat of obesity and liver diseases, including fatty liver and liver cirrhosis in East Asia. AIM OF THE STUDY: Liver fibrosis is a major cause of morbidity and mortality in patients with chronic liver inflammation such as that caused by non-alcoholic steatohepatitis. However, no effective pharmaceutical treatment for liver fibrosis has been approved. In this study, we aimed to investigate that ethanol extract of pharbitis nil (PNE) alleviates the liver fibrosis. MATERIALS AND METHODS: We studied the effects of PNE on two preclinical models. Six-week-old male C57BL/6 mice were intraperitoneally injected with CCl4 twice weekly for 6 weeks and then treated with 5 or 10 mg/kg PNE daily from week 3 for weeks. Secondly, mice were fed HFD for 41 weeks and at 35 weeks treated with 5 mg/kg PNE daily for the remaining 6 weeks. In addition, we examined the antifibrotic effects of PNE in primary mouse hepatic stellate cells and LX-2 cells. RESULTS: PNE treatment ameliorated hepatocyte necrosis, inflammation, and liver fibrosis in CCl4-treated mice and inhibited the progression of liver fibrosis in mice with HFD-induced fibrosis. PNE reduced the expressions of fibrosis markers and SMAD2/3 activations in mouse livers and in TGFß1-treated primary mouse hepatic stellate and LX-2 cells CONCLUSIONS: This study demonstrates that PNE attenuates liver fibrosis by downregulating TGFß1-induced SMAD2/3 activation.


Subject(s)
Ipomoea nil , Non-alcoholic Fatty Liver Disease , Animals , Ethanol/pharmacology , Fibrosis , Hepatic Stellate Cells , Humans , Inflammation/pathology , Ipomoea nil/metabolism , Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Smad2 Protein/metabolism , Transforming Growth Factor beta1/metabolism
15.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458050

ABSTRACT

This work proposes an InGaN/GaN multiple-quantum-well flip-chip blue ultrathin side-emitting (USE) light-emitting diode (LED) and describes the sidewall light emission characteristics for the application of backlight units in display technology. The USE-LEDs are fabricated with top (ITO/distributed Bragg reflector) and bottom (Ag) mirrors that cause light emission from the four sidewalls in a lateral direction. The effect of light output power (LOP) on lateral direction is consistently investigated for improving the optoelectronic performances of USE-LEDs. Initially, the reference USE-LED suffers from very low LOP because of poor light extraction efficiency (LEE). Therefore, the LEE is improved by fabricating ZnO nanorods at each sidewall through hydrothermal method. The effects of ZnO nanorod lengths and diameters on LOP are systematically investigated for optimizing the dimensions of ZnO nanorods. The optimized ZnO nanorods improve the LEE of USE-LED, which thus results in increasing the LOP > 80% compared to the reference LED. In addition, the light-tools simulator is also used for elucidating the increase in LEE of ZnO nanorods USE-LED.

16.
Adv Sci (Weinh) ; 9(13): e2104569, 2022 May.
Article in English | MEDLINE | ID: mdl-35253401

ABSTRACT

To expand the unchartered materials space of lead-free ferroelectrics for smart digital technologies, tuning their compositional complexity via multicomponent alloying allows access to enhanced polar properties. The role of isovalent A-site in binary potassium niobate alloys, (K,A)NbO3 using first-principles calculations is investigated. Specifically, various alloy compositions of (K,A)NbO3 are considered and their mixing thermodynamics and associated polar properties are examined. To establish structure-property design rules for high-performance ferroelectrics, the sure independence screening sparsifying operator (SISSO) method is employed to extract key features to explain the A-site driven polarization in (K,A)NbO3 . Using a new metric of agreement via feature-assisted regression and classification, the SISSO model is further extended to predict A-site driven polarization in multicomponent systems as a function of alloy composition, reducing the prediction errors to less than 1%. With the machine learning model outlined in this work, a polarity-composition map is established to aid the development of new multicomponent lead-free polar oxides which can offer up to 25% boosting in A-site driven polarization and achieving more than 150% of the total polarization in pristine KNbO3 . This study offers a design-based rational route to develop lead-free multicomponent ferroelectric oxides for niche information technologies.

17.
BMB Rep ; 55(4): 187-191, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35000670

ABSTRACT

Obesity is caused by an imbalance between energy intake and energy expenditure. Exercise is attracting attention as one of the ways to treat obesity. Exercise induces 'beige adipogenesis' in white adipose tissue, increasing total energy expenditure via energy dissipation in the form of heat. Also, beige adipogenesis can be induced by treatment with a beta-adrenergic receptor agonist. We developed a Cidea-dual reporter mouse (Cidea-P2ALuc2-T2A-tdTomato, Luciferase/tdTomato) model to trace and measure beige adipogenesis in vivo. As a result, both exercise and injection of beta-adrenergic receptor agonist induced beige adipogenesis and was detected through fluorescence and luminescence. We confirmed that exercise and beta-adrenergic receptor agonist induce beige adipogenesis in Cidea-dual reporter mouse, which will be widely used for detecting beige adipogenesis in vivo. [BMB Reports 2022; 55(4): 187-191].


Subject(s)
Adipogenesis , Adipose Tissue, White , Animals , Apoptosis Regulatory Proteins , Mice , Obesity , Signal Transduction
18.
Int J Mol Sci ; 22(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204534

ABSTRACT

Leaky gut is a condition of increased paracellular permeability of the intestine due to compromised tight junction barriers. In recent years, this affliction has drawn the attention of scientists from different fields, as a myriad of studies prosecuted it to be the silent culprit of various immune diseases. Due to various controversies surrounding its culpability in the clinic, approaches to leaky gut are restricted in maintaining a healthy lifestyle, avoiding irritating factors, and practicing alternative medicine, including the consumption of supplements. In the current study, we investigate the tight junction-modulating effects of processed Aloe vera gel (PAG), comprising 5-400-kD polysaccharides as the main components. Our results show that oral treatment of 143 mg/kg PAG daily for 10 days improves the age-related leaky gut condition in old mice, by reducing their individual urinal lactulose/mannitol (L/M) ratio. In concordance with in vivo experiments, PAG treatment at dose 400 µg/mL accelerated the polarization process of Caco-2 monolayers. The underlying mechanism was attributed to enhancement in the expression of intestinal tight junction-associated scaffold protein zonula occludens (ZO)-1 at the translation level. This was induced by activation of the MAPK/ERK signaling pathway, which inhibits the translation repressor 4E-BP1. In conclusion, we propose that consuming PAG as a complementary food has the potential to benefit high-risk patients.


Subject(s)
Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Plant Preparations/pharmacology , Tight Junctions/drug effects , Tight Junctions/metabolism , Animals , Biomarkers , Cell Line , Cell Membrane Permeability , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Humans , Male , Mice , Models, Biological , Signal Transduction , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
19.
Lab Anim Res ; 37(1): 20, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34330339

ABSTRACT

BACKGROUND: Particulate matter (PM) is one of the principal causes of human respiratory disabilities resulting from air pollution. Animal models have been applied to discover preventive and therapeutic drugs for lung diseases caused by PM. However, the induced severity of lung injury in animal models using PM varies from study to study due to disparities in the preparation of PM, and the route and number of PM administrations. In this study, we established an in vivo model to evaluate PM-induced lung injury in mice. RESULTS: PM dispersion was prepared using SRM2975. Reactive oxygen species were increased in MLE 12 cells exposed to this PM dispersion. In vivo studies were conducted in the PM single challenge model, PM multiple challenge model, and PM challenge with ovalbumin-induced asthma using the PM dispersion. No histopathological changes were observed in lung tissues after a single injection of PM, whereas mild to moderate lung inflammation was obtained in the lungs of mice exposed to PM three times. However, fibrotic changes were barely seen, even though transmission electron microscopy (TEM) studies revealed the presence of PM particles in the alveolar macrophages and alveolar capillaries. In the OVA-PM model, peribronchial inflammation and mucous hypersecretion were more severe in the OVA+PM group than the OVA group. Serum IgE levels tended to increase in OVA+PM group than in OVA group. CONCLUSIONS: In this study, we established a PM-induced lung injury model to examine the lung damage induced by PM. Based on our results, repeated exposures of PM are necessary to induce lung inflammation by PM alone. PM challenge, in the presence of underlying diseases such as asthma, can also be an appropriate model for studying the health effect of PM.

20.
Adv Sci (Weinh) ; 8(10): 2001544, 2021 05.
Article in English | MEDLINE | ID: mdl-34026425

ABSTRACT

Organic neuromorphic computing/sensing platforms are a promising concept for local monitoring and processing of biological signals in real time. Neuromorphic devices and sensors with low conductance for low power consumption and high conductance for low-impedance sensing are desired. However, it has been a struggle to find materials and fabrication methods that satisfy both of these properties simultaneously in a single substrate. Here, nanofiber channels with a self-formed ion-blocking layer are fabricated to create organic electrochemical transistors (OECTs) that can be tailored to achieve low-power neuromorphic computing and fast-response sensing by transferring different amounts of electrospun nanofibers to each device. With their nanofiber architecture, the OECTs exhibit a low switching energy of 113 fJ and operate within a wide bandwidth (cut-off frequency of 13.5 kHz), opening a new paradigm for energy-efficient neuromorphic computing/sensing platforms in a biological environment without the leakage of personal information.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Nanofibers/chemistry , Polymers/chemistry , Synapses/physiology , Transistors, Electronic/standards , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...