Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Biol Chem ; 300(1): 105479, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981210

ABSTRACT

Autophagy is a degradative pathway that plays an important role in maintaining cellular homeostasis. Dysfunction of autophagy is associated with the progression of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although one of the typical features of brain aging is an accumulation of redox-active metals that eventually lead to neurodegeneration, a plausible link between trace metal-induced neurodegeneration and dysregulated autophagy has not been clearly determined. Here, we used a cupric chloride-induced neurodegeneration model in MN9D dopaminergic neuronal cells along with ultrastructural and biochemical analyses to demonstrate impaired autophagic flux with accompanying lysosomal dysfunction. We found that a surge of cytosolic calcium was involved in cupric chloride-induced dysregulated autophagy. Consequently, buffering of cytosolic calcium by calbindin-D28K overexpression or co-treatment with the calcium chelator BAPTA attenuated the cupric chloride-induced impairment in autophagic flux by ameliorating dysregulation of lysosomal function. Thus, these events allowed the rescue of cells from cupric chloride-induced neuronal death. These phenomena were largely confirmed in cupric chloride-treated primary cultures of cortical neurons. Taken together, these results suggest that abnormal accumulation of trace metal elements and a resultant surge of cytosolic calcium leads to neuronal death by impairing autophagic flux at the lysosomal level.


Subject(s)
Autophagy , Calcium , Copper , Dopaminergic Neurons , Lysosomes , Autophagy/drug effects , Autophagy/genetics , Calcium/metabolism , Copper/pharmacology , Dopaminergic Neurons/cytology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/ultrastructure , Lysosomes/metabolism , Animals , Mice , Cell Line , Cell Survival/drug effects , Cytosol/metabolism
2.
Biochem Biophys Res Commun ; 666: 92-100, 2023 07 23.
Article in English | MEDLINE | ID: mdl-37178510

ABSTRACT

AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase comprising α, ß, and γ subunits. AMPK is involved in intracellular energy metabolism and functions as a switch that turns various biological pathways in eukaryotes on and off. Several post-translational modifications regulating AMPK function have been demonstrated, including phosphorylation, acetylation, and ubiquitination; however, arginine methylation has not been reported in AMPKα1. We investigated whether arginine methylation occurs in AMPKα1. Screening experiments revealed arginine methylation of AMPKα1 mediated by protein arginine methyltransferase 6 (PRMT6). In vitro methylation and co-immunoprecipitation assays indicated that PRMT6 can directly interact with and methylate AMPKα1 without involvement of other intracellular components. In vitro methylation assays with truncated and point mutants of AMPKα1 revealed that Arg403 is the residue methylated by PRMT6. Immunocytochemical studies showed that the number of AMPKα1 puncta was enhanced in saponin-permeabilized cells when AMPKα1 was co-expressed with PRMT6, suggesting that PRMT6-mediated methylation of AMPKα1 at Arg403 alters the physiological characteristics of AMPKα1 and may lead to liquid-liquid phase separation.


Subject(s)
AMP-Activated Protein Kinases , Nuclear Proteins , Nuclear Proteins/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Methylation , Protein Processing, Post-Translational , Arginine/genetics , Arginine/metabolism , Protein-Arginine N-Methyltransferases/metabolism
3.
J Neural Transm (Vienna) ; 129(5-6): 463-475, 2022 06.
Article in English | MEDLINE | ID: mdl-34837535

ABSTRACT

Ubiquitination and sumoylation are two important posttranslational modifications in cells. RING (Really Interesting New Gene)-type E3 ligases play essential roles in regulating a plethora of biological processes such as cell survival and death. In our previous study, we performed a microarray using inputs from MN9D dopaminergic neuronal cells treated with 6-hydroxydopamine and identified a novel RING-type E3 ligase, RNF166. We showed that RNF166 exerts proapoptotic effects via ubiquitin-dependent degradation of X-linked inhibitor of apoptosis and subsequent overactivation of caspase-dependent neuronal death following 6-hydroxydopamine treatment. In the present study, we further expanded the list of RNF166's binding substrates using mass spectral analyses of immunoprecipitates obtained from RNF166-overexpressing HEK293 cells. Poly (ADP-ribose) polymerase 1, ATPase WRNIP1, X-ray repair cross-complementing protein 5 (Ku80), and replication protein A 70 were identified as potential binding partners of RNF166. Additionally, we confirmed that RNF166 interacts with and forms lysine 63-linked polyubiquitin chains in Ku80. Consequently, these events promoted the increased stability of Ku80. Intriguingly, we found that RNF166 also contains distinct consensus sequences termed SUMO-interacting motifs and interacts with apoptosis signal-regulating kinase 1 (ASK1). We determined that RNF166 induces the sumoylation of ASK1. Overall, our data provide novel evidence that RNF166 has a dual function of Lys63-linked ubiquitination and sumoylation of its cellular targets.


Subject(s)
Sumoylation , Ubiquitin-Protein Ligases , Ubiquitin , HEK293 Cells , Humans , Oxidopamine , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Biochem Biophys Res Commun ; 548: 20-26, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33631669

ABSTRACT

Autophagy and apoptosis are essential physiological pathways that are required to maintain cellular homeostasis. Therefore, it is suggested that dysregulation in both pathways is linked to several disease states. Moreover, the crosstalk between autophagy and apoptosis plays an important role in pathophysiological processes associated with several neurodegenerative disorders. We have previously reported that 6-hydroxydopamine (6-OHDA)-triggered reactive oxygen species (ROS) induces dysregulated autophagy, and that a dysregulated autophagic flux contributes to caspase-dependent neuronal apoptosis. Based on our previous findings, we specifically aimed to elucidate the molecular mechanisms underlying the potential role of dysregulated autophagy in apoptotic neurodegeneration. The disuccinimidyl suberate (DSS) cross-linking assay and immunological analyses indicated that exposure of several types of cells to 6-OHDA resulted in BAX activation and subsequent oligomerization. Pharmacological inhibition and genetic perturbation of autophagy prevented 6-OHDA-induced BAX oligomerization and subsequent release of mitochondrial cytochrome c into the cytosol and caspase activation. These events were independent of expression levels of XIAP. Taken together, our results suggest that BAX oligomerization comprises a critical step by which 6-OHDA-induced dysregulated autophagy mediates neuronal apoptosis.


Subject(s)
Autophagy , Cytochromes c/metabolism , Neurons/metabolism , Oxidopamine/pharmacology , Protein Multimerization , bcl-2-Associated X Protein/metabolism , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Line , Cerebral Cortex/cytology , Mice , Mitochondria/metabolism , Neurons/drug effects , X-Linked Inhibitor of Apoptosis Protein/metabolism
5.
Cell Death Dis ; 11(10): 939, 2020 10 31.
Article in English | MEDLINE | ID: mdl-33130818

ABSTRACT

The dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA), has been widely utilized to establish experimental models of Parkinson disease and to reveal the critical molecules and pathway underlying neuronal death. The profile of gene expression changes following 6-OHDA treatment of MN9D dopaminergic neuronal cells was investigated using a TwinChip Mouse-7.4K microarray. Functional clustering of altered sets of genes identified RING-finger protein 166 (RNF166). RNF166 is composed of an N-terminal RING domain and C-terminal ubiquitin interaction motif. RNF166 localized in the cytosol and nucleus. At the tissue level, RNF166 was widely expressed in the central nervous system and peripheral organs. In the cerebral cortex, its expression decreased over time. In certain conditions, overexpression of RNF166 accelerates the naturally occurring neuronal death and 6-OHDA-induced MN9D cell death as determined by TUNEL and annexin-V staining, and caspase activation. Consequently, 6-OHDA-induced apoptotic cell death was attenuated in RNF166-knockdown cells. In an attempt to elucidate the mechanism underlying this pro-apoptotic activity, binding protein profiles were assessed using the yeast two-hybrid system. Among several potential binding candidates, RNF166 was shown to interact with the cytoplasmic X-linked inhibitor of apoptosis (XIAP), inducing ubiquitin-dependent degradation of XIAP and eventually accelerating caspase activation following 6-OHDA treatment. RNF166's interaction with and resulting inhibition of the XIAP anti-caspase activity was further enhanced by XIAP-associated factor-1 (XAF-1). Consequently, depletion of RNF166 suppressed 6-OHDA-induced caspase activation and apoptotic cell death, which was reversed by XIAP knockdown. In summary, our data suggest that RNF166, a novel E3 ligase, plays a pro-apoptotic role via caspase activation in neuronal cells.


Subject(s)
Neurotoxins/metabolism , Parkinson Disease/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , Humans , Mice , Transfection
6.
Neurosci Lett ; 736: 135265, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32707070

ABSTRACT

Neuronal cell death induced by ischemic injury has been attributed to glutamate receptor-mediated excitotoxicity, which is known to be accompanied by Ca2+ overload in the cytoplasm with concomitant activation of calcium-dependent mechanisms. More specifically, the overactivation of calpains, calcium-dependent cysteine proteases, have been associated with neuronal cell death following glutamate treatment. Previously, we observed decreased expression levels of F-box/WD repeat domain-containing protein 7 (Fbxw7) after the hyperactivation of cyclin-dependent kinase 5 (Cdk5) in cortical neurons challenged with glutamate. As determined using in vitro calpain cleavage assays, we demonstrated that the cleavage of Fbxw7 was mediated by activated calpain and attenuated in the presence of the calpain inhibitor, calpeptin. Using the rat middle cerebral artery occlusion model, we confirmed that Fbxw7 was indeed cleaved by activated calpain in the ipsilateral cortex. Based on our data, we hypothesize that the negative regulation of Fbxw7 by calpain may contribute to neuronal cell death and that the preservation of Fbxw7 by the inhibition of calpain, Cdk5, or both composes a novel protective mechanism following excitotoxicity.


Subject(s)
Calpain/metabolism , Cerebral Cortex/metabolism , F-Box-WD Repeat-Containing Protein 7/metabolism , Infarction, Middle Cerebral Artery/metabolism , Neurons/metabolism , Animals , Cell Death/physiology , Cerebral Cortex/pathology , Cyclin-Dependent Kinase 5/metabolism , Glutamic Acid/metabolism , Infarction, Middle Cerebral Artery/pathology , Neurons/pathology , Rats
7.
Biochem Biophys Res Commun ; 520(1): 99-106, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31582212

ABSTRACT

Neurodegenerative diseases are associated with elevated levels of metal elements, which are well-known inducers of reactive oxygen species (ROS) in cells. Because dopaminergic neurons in the substantia nigra are vulnerable to ROS, dysregulation of metals and the resulting accumulation of ROS could be a cause of dopaminergic neurodegeneration. In this study, we showed that overexpression of anamorsin protected MN9D dopaminergic neuronal cells from cupric chloride-induced death. This cytoprotection was achieved by specifically decreasing ROS levels. As determined by mini two-dimensional electrophoretic assay, an acidic shift of anamorsin occurred during drug-induced death, which seemed to be mediated by oxidative modification of three of its CXXC motifs. Consequently, drug-induced dissociation of ASK1 from Trx1 and subsequent phosphorylation of JNK and p38 MAPK were inhibited in MN9D cells overexpressing anamorsin. Taken together, our results indicate that anamorsin exerts a neuroprotective effect by reducing intracellular ROS levels and subsequently attenuating activated stress-activated MAP kinases pathways.


Subject(s)
Cell Death/drug effects , Copper , Dopamine/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Neurons/drug effects , Amino Acid Motifs , Animals , Apoptosis/drug effects , Dopaminergic Neurons/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Mice , Oxygen/chemistry , Phosphorylation , Reactive Oxygen Species/metabolism , Substantia Nigra/metabolism , Thioredoxins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Cell Death Discov ; 5: 130, 2019.
Article in English | MEDLINE | ID: mdl-31452956

ABSTRACT

Parkinson's disease (PD) is a chronic neurodegenerative disease with no cure. Calbindin, a Ca2+-buffering protein, has been suggested to have a neuroprotective effect in the brain tissues of PD patients and in experimental models of PD. However, the underlying mechanisms remain elusive. Here, we report that in 1-methyl-4-phenylpyridinium (MPP+)-induced culture models of PD, the buffering of cytosolic Ca2+ by calbindin-D28 overexpression or treatment with a chemical Ca2+ chelator reversed impaired autophagic flux, protecting cells against MPP+-mediated neurotoxicity. When cytosolic Ca2+ overload caused by MPP+ was ameliorated, the MPP+-induced accumulation of autophagosomes decreased and the autophagic flux significantly increased. In addition, the accumulation of damaged mitochondria and p62-positive ubiquitinated protein aggregates, following MPP+ intoxication, was alleviated by cytosolic Ca2+ buffering. We showed that MPP+ treatment suppressed autophagic degradation via raising the lysosomal pH and therefore reducing cytosolic Ca2+ elevation restored the lysosomal pH acidity and normal autophagic flux. These results support the notion that functional lysosomes are required for Ca2+-mediated cell protection against MPP+-mediated neurotoxicity. Thus, our data suggest a novel process in which the modulation of Ca2+ confers neuroprotection via the autophagy-lysosome pathway. This may have implications for the pathogenesis and future therapeutic targets of PD.

9.
Cell Death Dis ; 10(8): 579, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31371703

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine protein kinase that regulates brain development and neurodegeneration. Cdk5 is activated by p25 that is generated from calpain-dependent cleavage of p35. The generation of p25 is responsible for the aberrant hyper-activation of Cdk5, which causes neurodegeneration. Using in vitro assays, we discovered that F-box/WD repeat-containing protein 7 (Fbxw7) is a new substrate of Cdk5. Additionally, Cdk5-dependent phosphorylation of Fbxw7 was detected in the presence of p25, and two amino acid residues (S349 and S372) were determined to be major phosphorylation sites. This phosphorylation was eventually linked to decreased stability of Fbxw7. Using a culture model of cortical neurons challenged with glutamate, we confirmed that decreased stability of Fbxw7 was indeed Cdk5-dependent. Furthermore, diminished levels of Fbxw7 led to increased levels of transcription factor AP-1 (c-Jun), a known substrate of Fbxw7. Given that previous reports demonstrate that c-Jun plays a role in accelerating neuronal apoptosis in these pathological models, our data support the concepts of a molecular cascade in which Cdk5-mediated phosphorylation of Fbxw7 negatively regulates Fbxw7 expression, thereby contributing to neuronal cell death following glutamate-mediated excitotoxicity.


Subject(s)
Brain/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Nerve Degeneration/genetics , Neurons/metabolism , Animals , Brain/growth & development , Brain/pathology , Cell Death/genetics , Cerebellar Cortex/growth & development , Cerebellar Cortex/metabolism , Cerebellar Cortex/pathology , Gene Expression Regulation, Developmental/genetics , Glutamic Acid/metabolism , HEK293 Cells , Humans , Mice , Nerve Degeneration/pathology , Nervous System/growth & development , Nervous System/metabolism , Neurons/pathology , Phosphorylation/genetics , Phosphotransferases/genetics , Primary Cell Culture , Protein Stability
10.
Parkinsonism Relat Disord ; 66: 143-150, 2019 09.
Article in English | MEDLINE | ID: mdl-31353306

ABSTRACT

INTRODUCTION: Most cases of Parkinson's disease (PD) are sporadic, but genetic variations have been discovered in PD patients. PARK7/DJ-1 is a known cause of early-onset autosomal-recessive PD and is implicated in neuroprotection against oxidative stress. Although several post-translational modifications of DJ-1 have been proposed, phospho-modification of DJ-1 and its functional consequences have been less studied. METHODS: Putative phosphorylation sites of DJ-1 were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS analysis). Subsequently, phosphorylation site of DJ-1 was confirmed by in vitro kinase assay and cell-based pull-down assay. Impaired dimer formation of phospho-null mutant was measured using DSS crosslinking assay and immunoprecipitation assay. To evaluate physiological consequences of this event, protein stability of DJ-1 WT and DJ-1 phospho-null mutant were compared using cycloheximide chase assay and ubiquitination assay. RESULTS: Here, we showed that DJ-1 directly bound to the catalytic subunit of protein kinase A (PKAcα). We found that PKAcα is responsible for phosphorylation of DJ-1 at the T154 residue. Interestingly, dimerization of DJ-1 was not detected in a DJ-1 T154A mutant. Furthermore, stability of the DJ-1 T154A mutant was dramatically reduced compared with that of wild-type DJ-1. We found that DJ-1 T154A was prone to degradation by the ubiquitin proteasome system (UPS). CONCLUSION: We identified a novel phosphorylation site of DJ-1. Furthermore, we determined protein kinase A that is responsible for this posttranslational modification. Finally, we demonstrated physiological consequences of this event focusing on dimerization and protein stability of DJ-1.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Parkinson Disease/metabolism , Protein Deglycase DJ-1/metabolism , Chromatography, Liquid , HEK293 Cells , Humans , Phosphorylation/physiology , Protein Stability , Tandem Mass Spectrometry
11.
Cell Death Dis ; 9(12): 1189, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30538224

ABSTRACT

Autophagy is a regulated, intracellular degradation process that delivers unnecessary or dysfunctional cargo to the lysosome. Autophagy has been viewed as an adaptive survival response to various stresses, whereas in other cases, it promotes cell death. Therefore, both deficient and excessive autophagy may lead to cell death. In this study, we specifically attempted to explore whether and how dysregulated autophagy contributes to caspase-dependent neuronal cell death induced by the neurotoxin 6-hydroxydopamine (6-OHDA). Ultrastructural and biochemical analyses indicated that MN9D neuronal cells and primary cultures of cortical neurons challenged with 6-OHDA displayed typical features of autophagy. Cotreatment with chloroquine and monitoring autophagic flux by a tandem mRFP-EGFP-tagged LC3 probe indicated that the autophagic phenomena were primarily caused by dysregulated autophagic flux. Consequently, cotreatment with an antioxidant but not with a pan-caspase inhibitor significantly blocked 6-OHDA-stimulated dysregulated autophagy. These results indicated that 6-OHDA-induced generation of reactive oxygen species (ROS) played a critical role in triggering neuronal death by causing dysregulated autophagy and subsequent caspase-dependent apoptosis. The results of the MTT reduction, caspase-3 activation, and TUNEL assays indicated that pharmacological inhibition of autophagy using 3-methyladenine or deletion of the autophagy-related gene Atg5 significantly inhibited 6-OHDA-induced cell death. Taken together, our results suggest that abnormal induction of autophagic flux promotes apoptotic neuronal cell death, and that the treatments limiting dysregulated autophagy may have a strong neuroprotective potential.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , Caspase 3/genetics , Neurons/metabolism , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Autophagy-Related Protein 5/genetics , Caspase Inhibitors/pharmacology , Chloroquine/pharmacology , Humans , Mice , Neurons/pathology , Oxidopamine/pharmacology , Primary Cell Culture , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
12.
Sci Rep ; 8(1): 15953, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374025

ABSTRACT

Moutan cortex, Angelica Dahurica root, and Bupleurum root are traditional herbal medicines used in Asian countries to treat various diseases caused by oxidative stress or inflammation. Parkinson's disease (PD) has been associated with mitochondrial dysfunction, but no effective treatment for mitochondrial dysfunction has yet been identified. In this study we investigated the neuroprotective effects of the triple herbal extract DA-9805 in experimental models of PD. DA-9805 was prepared by extracting three dried plant materials (Moutan cortex, Angelica Dahurica root, and Bupleurum root in a 1:1:1 mixture) with 90% ethanol on a stirring plate for 24 h at room temperature and fingerprinted using high-performance liquid chromatography. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP+), which both exert neurotoxic effects on dopaminergic neurons by inhibiting mitochondrial oxidative phosphorylation (OXPHOS) complex I, were used to make experimental models of PD. In MPP+-treated SH-SY5Y cells, DA-9805 ameliorated the suppression of tyrosine hydroxylase expression and mitochondrial damage on OXPHOS complex 1 activity, mitochondrial membrane potential, reactive oxygen species (ROS) generation, and oxygen consumption rate. In the MPTP-induced subacute PD model mice, oral administration of DA-9805 recovered dopamine content as well as bradykinesia, as determined by the rotarod test. DA-9805 protected against neuronal damage in the substantia nigra pars compacta (SNpc) and striatum. In both in vitro and in vivo models of PD, DA-9805 normalized the phosphorylation of AKT at S473 and T308 on the insulin signaling pathway and the expression of mitochondria-related genes. These results demonstrate that the triple herbal extract DA-9805 showed neuroprotective effects via alleviating mitochondria damage in experimental models of PD. We propose that DA-9805 may be a suitable candidate for disease-modifying therapeutics for PD.


Subject(s)
Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Angelica/chemistry , Angelica/metabolism , Animals , Bupleurum/chemistry , Bupleurum/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Neuroprotective Agents/therapeutic use , Paeonia/chemistry , Paeonia/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
13.
Sci Rep ; 8(1): 13676, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30209341

ABSTRACT

Cyclin-dependent kinase 5 (CDK5) plays a pivotal role in neural development and neurodegeneration. CDK5 activity can be regulated by posttranslational modifications, including phosphorylation and S-nitrosylation. In this study, we demonstrate a novel mechanism by which the acetylation of CDK5 at K33 (Ac-CDK5) results in the loss of ATP binding and impaired kinase activity. We identify GCN5 and SIRT1 as critical factor controlling Ac-CDK5 levels. Ac-CDK5 achieved its lowest levels in rat fetal brains but was dramatically increased during postnatal periods. Intriguingly, nuclear Ac-CDK5 levels negatively correlated with neurite length in embryonic hippocampal neurons. Either treatment with the SIRT1 activator SRT1720 or overexpression of SIRT1 leads to increases in neurite length, whereas SIRT1 inhibitor EX527 or ectopic expression of acetyl-mimetic (K33Q) CDK5 induced the opposite effect. Furthermore, the expression of nuclear-targeted CDK5 K33Q abolished the SRT1720-induced neurite outgrowth, showing that SIRT1 positively regulates neurite outgrowth via deacetylation of nuclear CDK5. The CDK5 activity-dependent increase of neurite length was mediated by enhanced transcriptional regulation of BDNF via unknown mechanism(s). Our findings identify a novel mechanism by which acetylation-mediated regulation of nuclear CDK5 activity plays a critical role in determining neurite length in embryonic neurons.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Hippocampus/metabolism , Lysine/metabolism , Neurons/metabolism , Acetylation , Brain-Derived Neurotrophic Factor/metabolism , Cell Line , Gene Expression Regulation/physiology , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings/metabolism , Humans , Nerve Tissue Proteins/metabolism , Neurites/metabolism , Neurogenesis/physiology , Protein Processing, Post-Translational/physiology , Sirtuin 1/metabolism , Temporal Lobe/metabolism
14.
Front Plant Sci ; 9: 62, 2018.
Article in English | MEDLINE | ID: mdl-29441088

ABSTRACT

Nicotiana benthamiana transient overexpression systems offer unique advantages for rapid and scalable biopharmaceuticals production, including high scalability and eukaryotic post-translational modifications such as N-glycosylation. High-mannose-type glycans (HMGs) of glycoprotein antigens have been implicated in the effectiveness of some subunit vaccines. In particular, Man9GlcNAc2 (Man9) has high binding affinity to mannose-specific C-type lectin receptors such as the mannose receptor and dendritic cell-specific intracellular adhesion molecule 3-grabbing non-integrin (DC-SIGN). Here, we investigated the effect of kifunensine, an α-mannosidase I inhibitor, supplemented in a hydroponic culture of N. benthamiana for the production of Man9-rich HMG glycoproteins, using N-glycosylated cholera toxin B subunit (gCTB) and human immunodeficiency virus gp120 that are tagged with a H/KDEL endoplasmic reticulum retention signal as model vaccine antigens. Biochemical analysis using anti-fucose and anti-xylose antibodies as well as Endo H and PNGase F digestion showed that kifunensine treatment effectively reduced plant-specific glycoforms while increasing HMGs in the N-glycan compositions of gCTB. Detailed glycan profiling revealed that plant-produced gp120 had a glycan profile bearing mostly HMGs regardless of kifunensine treatment. However, the gp120 produced under kifunensine-treatment conditions showed Man9 being the most prominent glycoform (64.5%), while the protein produced without kifunensine had a substantially lower Man9 composition (20.3%). Our results open up possibilities for efficient production of highly mannosylated recombinant vaccine antigens in plants.

15.
Parkinsonism Relat Disord ; 46 Suppl 1: S97-S100, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28764914

ABSTRACT

Autophagy is an evolutionarily conserved catabolic process that is involved in cellular homeostasis and stress responses. Although basal levels of autophagy are essential for cellular homeostasis, dysregulated autophagy is linked to neurodegeneration. Recent studies using genetic or neurotoxin-based models of Parkinson's disease (PD) detect autophagy. We demonstrate that neurotoxins induce autophagy in dopaminergic neuronal cell line and primary cultured neurons. Based on previous reports, including ones from our laboratory, which show that elevated reactive oxygen species (ROS) and cytosolic calcium are implicated in dopaminergic neurodegeneration, we reasoned that these triggers may play critical roles in determining dysregulated autophagy. Similarly, we have demonstrated that ROS-mediated signals play an essential role in 6-hydroxydopamine (6-OHDA)-induced apoptosis, whereas MPP+ causes elevations in cytosolic calcium and calpain activation. By using these experimental models, we specifically address the question as to whether an increase in ROS or cytosolic calcium governs abnormal flux of autophagy as well as the ubiquitin proteasome system (UPS). So far, our data support a notion that ROS and cytosolic calcium act on a distinct flux of autophagy and the UPS. Our data also raise the possibility of interplay between autophagy and other cell death modes (e.g., caspase- or calpain-dependent cell death) during dopaminergic neurodegeneration.


Subject(s)
Autophagy/physiology , Parkinson Disease/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Autophagy/drug effects , Calcium/metabolism , Disease Models, Animal , Humans , Neurotoxins/toxicity , Parkinson Disease/etiology , Reactive Oxygen Species
16.
Neurosci Lett ; 662: 295-301, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29111393

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase. Its dysregulation has been implicated in various neurodegenerative diseases. We previously reported that phosphorylation of the C-terminus of the Hsc70-interacting protein (CHIP) by Cdk5 promotes truncated apoptosis-inducing factor (tAIF)-mediated neuronal death induced by oxidative stress. Here, we determined whether this Cdk5-dependent cell death signaling pathway is present in experimental models of Parkinson's disease. First, we showed that rotenone activates Cdk5 in primary cultures of cortical neurons and causes tAIF-dependent neuronal cell death. This event was attenuated by negative regulation of endogenous Cdk5 activity by the pharmacological Cdk5 inhibitor, roscovitine, or by lentiviral knockdown of Cdk5. Cdk5 phosphorylates CHIP at Ser20 in rotenone-treated neurons. Consequently, overexpression of CHIPS20A, but not CHIPWT, attenuates tAIF-induced cell death in rotenone-treated cortical neurons. Taken together, these results indicate that phosphorylation of CHIP at Ser20 by Cdk5 activation inhibits CHIP-mediated tAIF degradation, thereby contributing to tAIF-induced neuronal cell death following rotenone treatment.


Subject(s)
Cerebral Cortex/metabolism , Cyclin-Dependent Kinase 5/metabolism , Neurons/metabolism , Parkinsonian Disorders/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis Inducing Factor/metabolism , Cell Death/drug effects , Cell Death/physiology , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Mice , Neurons/drug effects , Neurons/pathology , Parkinsonian Disorders/pathology , Phosphorylation , Rotenone/toxicity , Uncoupling Agents/toxicity
17.
Methods Mol Biol ; 1598: 229-245, 2017.
Article in English | MEDLINE | ID: mdl-28508364

ABSTRACT

Proteolysis is a process where proteins are broken down into smaller polypeptides or amino acids, comprising one of the important posttranslational modifications of proteins. Since this process is exquisitely achieved by specialized enzymes called proteases under physiological conditions, abnormal protease activity and dysregulation of their substrate proteins are closely associated with a progression of several neurodegenerative diseases including Alzheimer disease, Parkinson disease, stroke, and spinal cord injury. Thus, it is important to identify the specific substrates of proteases with nonbiased high-throughput screenings to understand how proteolysis contributes to neurodegeneration. Here, we described a so-called gel-based protease proteomic approach. Critical steps of our novel strategy consist of two-dimensional polyacrylamide gel electrophoresis (2-DE)-based protein separation and in vitro incubation with the specific protease of interest. As a prototypic example, cellular lysates obtained from neuronal cells are separated by an isoelectric focusing, and the resulting immobilized proteins on a gel strip are incubated with a predetermined amount of a recombinant or a purified protease. By densitometric analysis of the Coomassie Brilliant Blue-stained gel images following separation by 2-DE, significantly altered protein spots are subjected to a mass spectral analysis for protein identification. Interestingly, the concepts of our strategy can be applied to any proteases, and to any neural cells or neural tissues of one's interest. Since the immobilized protein spots are exposed to the purified protease, this protocol ensures the identification of only substrates that are directly cleaved by specific protease. This protocol ensures to avoid the possibility of identifying substrates that may be cleaved by combinatorial or sequential activation of proteolytic enzymes present in a liquid state of the lysates. We propose that our strategy can be effectively utilized to provide meaningful insights into newly identified protease substrates and to decipher molecular mechanisms critically involved in neurodegenerative processes.


Subject(s)
Electrophoresis, Gel, Two-Dimensional , Neurons/metabolism , Peptide Hydrolases/metabolism , Proteome , Proteomics , Cell Line , Dopaminergic Neurons/metabolism , Electrophoresis, Gel, Two-Dimensional/methods , Peptides , Proteolysis , Proteomics/methods , Statistics as Topic , Substrate Specificity
19.
Mol Neurobiol ; 54(7): 5347-5358, 2017 09.
Article in English | MEDLINE | ID: mdl-27590137

ABSTRACT

Interleukin-18 (IL18) is a multifunctional cytokine that has been implicated in increased susceptibility to depression; however, the underlying mechanism remains unknown. We found that the IL18 system in the basolateral amygdala (BLA) determined susceptibility to chronic stress. Mice subjected to chronic restraint stress or chronic foot-shock stress demonstrated increased expression of IL18 in the BLA, and exhibited depression-like behaviors, whereas IL18 knockout (KO) mice were resilient to these chronic stresses. IL18 and IL18 receptors in the BLA were expressed in glutamatergic and GABAergic neurons in addition to glial cells. Local inhibition of IL18 and IL18 receptors in the BLA by stereotaxic injection of siRNA-IL18 or siRNA-IL18 receptor-1α was sufficient to suppress stress-induced depression-like behaviors. Following chronic stress, the downstream mediator of IL18 receptor activation, phospho-NF-kB, was increased in BLA neurons expressing IL18 receptors. Furthermore, siRNA-mediated inhibition of NF-kB in the BLA significantly suppressed stress-induced depression-like behaviors, and NF-kB KO mice were resilient to chronic stress. The siRNA-mediated inhibition of NF-kB in the BLA downregulated stress-induced increased expression of Hcrt, MCH, OXT, AVP, and TRH, the neuropeptides that were induced by chronic stress in the BLA and promoted depression-like behaviors. These results suggest that the local IL18 and its receptor system in the BLA function as molecular regulators promoting susceptibility to chronic stress.


Subject(s)
Basolateral Nuclear Complex/metabolism , Interleukin-18/metabolism , Stress, Physiological , Animals , Anxiety/physiopathology , Depression/metabolism , GABAergic Neurons/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Restraint, Physical/methods , Synaptic Transmission/physiology
20.
Mol Neurobiol ; 53(9): 6251-6269, 2016 11.
Article in English | MEDLINE | ID: mdl-26563498

ABSTRACT

Selegiline is a monoamine oxidase-B (MAO-B) inhibitor with anti-Parkinsonian effects, but it is metabolized to amphetamines. Since another MAO-B inhibitor N-Methyl, N-propynyl-2-phenylethylamine (MPPE) is not metabolized to amphetamines, we examined whether MPPE induces behavioral side effects and whether MPPE affects dopaminergic toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Multiple doses of MPPE (2.5 and 5 mg/kg/day) did not show any significant locomotor activity and conditioned place preference, whereas selegiline (2.5 and 5 mg/kg/day) significantly increased these behavioral side effects. Treatment with MPPE resulted in significant attenuations against decreases in mitochondrial complex I activity, mitochondrial Mn-SOD activity, and expression induced by MPTP in the striatum of mice. Consistently, MPPE significantly attenuated MPTP-induced oxidative stress and MPPE-mediated antioxidant activity appeared to be more pronounced in mitochondrial-fraction than in cytosolic-fraction. Because MPTP promoted mitochondrial p53 translocation and p53/Bcl-xL interaction, it was also examined whether mitochondrial p53 inhibitor pifithrin-µ attenuates MPTP neurotoxicity. MPPE, selegiline, or pifithrin-µ significantly attenuated mitochondrial p53/Bcl-xL interaction, impaired mitochondrial transmembrane potential, cytosolic cytochrome c release, and cleaved caspase-3 in wild-type mice. Subsequently, these compounds significantly ameliorated MPTP-induced motor impairments. Neuroprotective effects of MPPE appeared to be more prominent than those of selegiline. MPPE or selegiline did not show any additional protective effects against the attenuation by p53 gene knockout, suggesting that p53 gene is a critical target for these compounds. Our results suggest that MPPE possesses anti-Parkinsonian potentials with guaranteed behavioral safety and that the underlying mechanism of MPPE requires inhibition of mitochondrial oxidative stress, mitochondrial translocation of p53, and pro-apoptotic process.


Subject(s)
Apoptosis/drug effects , Behavior, Animal , Dopaminergic Neurons/pathology , Mitochondria/metabolism , Phenethylamines/pharmacology , Selegiline/analogs & derivatives , Tumor Suppressor Protein p53/genetics , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Caspase 3/metabolism , Conditioning, Psychological , Cytochromes c/metabolism , Cytosol/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Electron Transport Complex I , Locomotion/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL , Mitochondria/drug effects , Monoamine Oxidase/metabolism , Neostriatum/drug effects , Neostriatum/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Phenethylamines/chemistry , Protein Binding/drug effects , Selegiline/chemistry , Selegiline/pharmacology , Sulfonamides/pharmacology , Superoxide Dismutase/metabolism , Tumor Suppressor Protein p53/metabolism , Uncoupling Protein 2/metabolism , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...