Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(5): 107277, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38588804

ABSTRACT

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.

2.
Biochem Biophys Res Commun ; 692: 149148, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38043157

ABSTRACT

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase that belongs to the type2A protein phosphatase family with PP4 and PP6. PP2A functions as a trimeric holoenzyme, and the composition of the trimer is regulated by the methyl-esterification (methylation) of PP2A. Demethylation of PP2A is catalyzed by protein phosphatase methyl-esterase-1 (PME-1). Despite the physiological and pathophysiological importance of PME-1, the impact of changes in PME-1 expression on the transcriptome has not been reported. This study provides transcriptome data to gain a comprehensive understanding of the effects of PME-1 knockout on intracellular signaling of mouse embryonic fibroblasts. Our data showed that PME-1 suppresses inflammatory signaling, activates PI3K/Akt signaling, and promotes epithelial-mesenchymal transition.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Mice , Epithelial-Mesenchymal Transition/genetics , Fibroblasts/metabolism , Gene Expression Profiling , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism
3.
J Biol Chem ; 300(1): 105584, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141761

ABSTRACT

Protein phosphatase 2A (PP2A) is an essential tumor suppressor, with its activity often hindered in cancer cells by endogenous PP2A inhibitory proteins like SE translocation (SET). SET/PP2A axis plays a pivotal role in the colony-formation ability of cancer cells and the stabilization of c-Myc and E2F1 proteins implicated in this process. However, in osteosarcoma cell line HOS, SET knock-down (KD) suppresses the colony-formation ability without affecting c-Myc and E2F1. This study aimed to unravel the molecular mechanism through which SET enhances the colony-formation ability of HOS cells and determine if it is generalized to other cancer cells. Transcriptome analysis unveiled that SET KD suppressed mTORC1 signaling. SET KD inhibited Akt phosphorylation, an upstream kinase for mTORC1. PP2A inhibitor blocked SET KD-mediated decrease in phosphorylation of Akt and a mTORC1 substrate p70S6K. A constitutively active Akt restored decreased colony-formation ability by SET KD, indicating the SET/PP2A/Akt/mTORC1 axis. Additionally, enrichment analysis highlighted that Bmi-1, a polycomb group protein, is affected by SET KD. SET KD decreased Bmi-1 protein by Akt inhibition but not by mTORC1 inhibition, and exogenous Bmi-1 expression rescued the reduced colony formation by SET KD. Four out of eight cancer cell lines exhibited decreased Bmi-1 by SET KD. Further analysis of these cell lines revealed that Myc activity plays a role in SET KD-mediated Bmi-1 degradation. These findings provide new insights into the molecular mechanism of SET-regulated colony-formation ability, which involved Akt-mediated activation of mTORC1/p70S6K and Bmi-1 signaling.


Subject(s)
DNA-Binding Proteins , Enzyme Inhibitors , Histone Chaperones , Mechanistic Target of Rapamycin Complex 1 , Neoplasms , Polycomb Repressive Complex 1 , Protein Phosphatase 2 , Proto-Oncogene Proteins c-akt , Humans , Enzyme Inhibitors/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation , Polycomb Repressive Complex 1/metabolism , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone Chaperones/deficiency , Histone Chaperones/genetics , Histone Chaperones/metabolism , Signal Transduction , Enzyme Activation , Cell Line, Tumor
4.
J Vet Med Sci ; 85(12): 1319-1323, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37880139

ABSTRACT

Transforming growth factor-beta (TGF-ß) is a multifunctional cytokine that controls various cellular processes. Protein phosphatase 6 (PP6) is an evolutionarily conserved serine/threonine protein phosphatase with diverse functions in cell signaling. However, it has not been linked to TGF-ß signaling. We found that TGF-ß treatment increased PP6 protein levels via transcriptional and post-translational regulation. Loss of the Ppp6c gene suppressed TGF-ß-induced canonical Smad3 phosphorylation and its transcriptional activity. PP6 knockout also inhibited non-canonical p38 mitogen-activated protein kinase (MAPK) pathway. Moreover, PP6 depletion suppressed cell migration induced by TGF-ß. These findings uncovered the role of PP6 as a positive regulator for TGF-ß signaling.


Subject(s)
Mitogen-Activated Protein Kinases , Transforming Growth Factor beta , Animals , Mice , Transforming Growth Factor beta/metabolism , Mitogen-Activated Protein Kinases/metabolism , Fibroblasts/metabolism , Signal Transduction , Phosphoprotein Phosphatases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Transforming Growth Factors/metabolism , Transforming Growth Factor beta1/metabolism
5.
J Vet Med Sci ; 85(8): 820-827, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37407446

ABSTRACT

Canine lymphoma is the most common cancer in dogs and has a poor prognosis. We recently found that the endocytosis inhibitor dynasore suppresses the viability of human cancer cell lines, especially hematopoietic cancers, by inducing apoptosis. In the present study, we examined the anticancer effects of dynasore on five previously established canine lymphoma cell lines (CLBL-1, Ema, Nody-1, CLC, and GL-1). Dynasore suppressed cell viability in these canine lymphoma cell lines more effectively than in human cancer cell lines. It also induced apoptosis in CLBL-1 and Ema cells but not in peripheral blood mononuclear cells in healthy dogs or in Madin-Darby canine kidney (MDCK) cells, suggesting that the ability of dynasore to induce apoptosis is cancer-specific. Furthermore, dynasore induced a DNA damage response in CLBL-1 and Ema cells, suggesting that it acts as a genotoxic agent in canine lymphoma cell lines. These findings suggest that endocytosis inhibitors may provide a new anticancer treatment for canine lymphoma.


Subject(s)
Dog Diseases , Lymphoma , Animals , Dogs , Humans , Leukocytes, Mononuclear/metabolism , Cell Line, Tumor , Lymphoma/drug therapy , Lymphoma/veterinary , Lymphoma/genetics , Apoptosis , Endocytosis , Dog Diseases/genetics
6.
Genes Cells ; 28(9): 629-641, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37489294

ABSTRACT

SE translocation (SET) is a cancer-promoting factor whose expression is upregulated in many cancers. High SET expression positively correlates with a poor cancer prognosis. SETBP1 (SET-binding protein 1/SEB/MRD29), identified as SET-binding protein, is the causative gene of Schinzel-Giedion syndrome, which is characterized by severe intellectual disability and a distorted facial appearance. Mutations in these genetic regions are also observed in some blood cancers, such as myelodysplastic syndromes, and are associated with a poor prognosis. However, the physiological role of SETBP1 and the molecular mechanisms by which the mutations lead to disease progression have not yet been fully elucidated. In this review, we will describe the current epidemiological data on SETBP1 mutations and shed light on the current knowledge about the SET-dependent and -independent functions of SETBP1.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Intellectual Disability , Neoplasms , Humans , Intellectual Disability/genetics , Mutation , Craniofacial Abnormalities/genetics , Carrier Proteins/genetics , Nuclear Proteins/genetics
7.
J Biochem ; 173(6): 435-445, 2023 May 29.
Article in English | MEDLINE | ID: mdl-36702627

ABSTRACT

The abnormal activity of PP2A, a dominant member of type 2A serine/threonine protein phosphatase, has been implicated in the development of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). PP2A is a holoenzyme, and protein methylation of the catalytic subunit, PP2Ac, alters the complex composition. A decrease in PP2Ac methylation levels has been reported in AD and DLB. Aging is the most common risk factor for AD and DLB, but the relationship between aging and PP2A has not been studied in detail. Cynomolgus monkey show increased phosphorylation levels of tau and α-synuclein with aging. In this study, we investigated the alterations in the PP2A activity regulation with aging in monkey brains from 2 to 43 years of age using fractionated proteins. We found that type 2A protein phosphatase activity decreased with aging in cytoplasmic and nuclear-soluble fractions. PP2Ac methylation level was decreased in cytoplasmic and sarkosyl-insoluble fractions. A principal component analysis using PP2Ac, demethylated PP2Ac and PP2A methylesterase PME-1 levels in cytoplasmic and nuclear-soluble fractions as attributes showed that aged monkeys were in the same cluster. Our results show that brain aging in cynomolgus monkeys is closely related to changes in PP2A methylation.


Subject(s)
Alzheimer Disease , Protein Phosphatase 2 , Animals , Protein Phosphatase 2/metabolism , Macaca fascicularis/metabolism , Pilot Projects , Methylation , Alzheimer Disease/metabolism , Phosphorylation , Brain/metabolism
8.
J Pathol ; 257(1): 39-52, 2022 05.
Article in English | MEDLINE | ID: mdl-35040131

ABSTRACT

Loss-of-function mutations in RNF43 induce activation of Wnt ligand-dependent Wnt/ß-catenin signaling through stabilization of the Frizzled receptor, which is often found in microsatellite instability (MSI)-type colorectal cancer (CRC) that develops from sessile serrated adenomas. However, the mechanism underlying how RNF43 mutations promote tumorigenesis remains poorly understood. In this study, we established nine human CRC-derived organoids and found that three organoid lines carried RNF43 frameshift mutations associated with MSI-high and BRAFV600E mutations, suggesting that these CRCs developed through the serrated pathway. RNF43 frameshift mutant organoids required both Wnt ligands and R-spondin for proliferation, indicating that suppression of ZNRF3 and retained RNF43 function by R-spondin are required to achieve an indispensable level of Wnt activation for tumorigenesis. However, active ß-catenin levels in RNF43-mutant organoids were lower than those in APC two-hit mutant CRC, suggesting a lower threshold for Wnt activation in CRC that developed through the serrated pathway. Interestingly, transplantation of RNF43-mutant organoids with intestinal myofibroblasts accelerated the ß-catenin nuclear accumulation and proliferation of xenograft tumors, indicating a key role of stromal cells in the promotion of the malignant phenotype of RNF43-mutant CRC cells. Sequencing of subcloned organoid cell-expressed transcripts revealed that two organoid lines carried monoallelic RNF43 cis-mutations, with two RNF43 frameshift mutations introduced in the same allele and the wild-type RNF43 allele remaining, while the other organoid line carried two-hit biallelic RNF43 trans-mutations. These results suggest that heterozygous RNF43 frameshift mutations contribute to CRC development via the serrated pathway; however, a second-hit RNF43 mutation may be advantageous in tumorigenesis compared with a single-hit mutation through further activation of Wnt signaling. Finally, treatment with the PORCN inhibitor significantly suppressed RNF43-mutant cell-derived PDX tumor development. These results suggest a novel mechanism underlying RNF43 mutation-associated CRC development and the therapeutic potential of Wnt ligand inhibition against RNF43-mutant CRC. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Colonic Neoplasms , Ubiquitin-Protein Ligases , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Colonic Neoplasms/genetics , Frameshift Mutation , Humans , Ligands , Microsatellite Instability , Mutation , Thrombospondins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
9.
J Biochem ; 171(3): 295-303, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35076073

ABSTRACT

SET/I2PP2A is a multifunctional protein that acts as an intrinsic inhibitor of the tumour suppressor protein phosphatase 2A and as a histone chaperone. Increased SET levels have been observed in various cancers; however, the underlying molecular mechanisms remain unclear. In this study, we found that SET protein accumulates with the increasing density of cultured cells. This phenomenon was observed not only in cancer cell lines but also in non-cancer cell lines. The mRNA levels of SET were not affected by the cell density. Proteasome inhibition decreased SET levels, whereas autophagy inhibition led to SET accumulation, indicating the involvement of autophagy. The mRNA and protein expression of SETBP1, which stabilizes the SET protein, increased with cell density. The decrease in SET level due to the loss of SETBP1 was more pronounced in wild-type cells than that in autophagy-deficient cells. These results have revealed a mechanism underlying the regulation of SET level, wherein increased cell density induces SETBP1 expression and protects SET from autophagy.


Subject(s)
DNA-Binding Proteins/metabolism , Histone Chaperones/metabolism , Neoplasms , Cell Count , Cell Line , Cell Line, Tumor , Humans , Protein Phosphatase 2/metabolism , Transcription Factors/metabolism
10.
J Biochem ; 170(1): 131-138, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34314486

ABSTRACT

Understanding the molecular mechanism of neuronal differentiation is important to overcome the incurable diseases caused by nervous system damage. Neurite outgrowth is prerequisite for neuronal differentiation and regeneration, and cAMP response element-binding protein (CREB) is one of the major transcriptional factors positively regulating this process. Neuronal differentiation stimuli activate mammalian target of rapamycin (mTOR) complex 2 (mTORC2)/Akt signalling to phosphorylate CREB; however, the precise molecular mechanism of this event has not been fully understood. In this manuscript, we show that neuronal differentiation stimuli increased a protein level of protein phosphatase 6 (PP6), a member of type 2A Ser/Thr protein phosphatases. PP6 knockdown suppressed mTORC2/Akt/CREB signalling and results in failure of neurite outgrowth. SIN1 is a unique component of mTORC2 that enhances mTORC2 activity towards Akt when it is in dephosphorylated form. We found PP6 knockdown increased SIN1 phosphorylation. These data suggest that PP6 may positively regulate neurite outgrowth by dephosphorylating SIN1 to activate mTORC2/Akt/CREB signalling.


Subject(s)
Mechanistic Target of Rapamycin Complex 2/metabolism , Phosphoprotein Phosphatases/metabolism , Animals , Cells, Cultured , Humans , Mice , Neuronal Outgrowth
11.
Biochem Biophys Res Commun ; 552: 191-195, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33751937

ABSTRACT

Autophagy is an evolutionarily conserved intracellular degradation system and is regulated by various signaling pathways including the Beclin 1/Vacuolar protein sorting 34 (Vps34) complex. Protein phosphatase 6 (PP6) is an essential serine/threonine phosphatase that regulates various biological processes. Recently, we found that PP6 protein is degraded by p62-dependent selective autophagy. In this study, we show that PP6 conversely inhibits autophagy. PP6 associate with the C-terminal region of Beclin 1, which is close to the binding region of Vps34. The protein levels of PP6 affect Beclin 1/Vps34 complex formation and phosphatase activity of PP6 is not involved in this. We also show that chemically induced PP6/Beclin 1 association leads to Vps34 dissociation from Beclin 1. Overall, our data reveal a novel regulatory mechanism for autophagy by PP6.


Subject(s)
Autophagy , Beclin-1/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Phosphoprotein Phosphatases/metabolism , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Mice, Knockout , Mice, Transgenic , Multiprotein Complexes/metabolism , Phosphoprotein Phosphatases/genetics
12.
Oncol Lett ; 21(2): 113, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33376545

ABSTRACT

Sezary syndrome is a rare type of non-Hodgkin lymphoma. Protein phosphatase 2A (PP2A) is an important tumor suppressor whose activity is widely inhibited in a variety of tumors. Recently, reactivation of PP2A has attracted increasing attention as a promising approach for cancer therapy. Phenothiazine anti-psychotic perphenazine (PPZ) exerts antitumor effects by reactivating PP2A. The present study investigated the molecular mechanism underling the antitumor effects of PPZ in the neuroblastoma rat sarcoma oncogene (NRAS)-mutated Sezary syndrome cell line, HUT78. The results of the present study demonstrated that PPZ induced the dephosphorylation of Akt and ERK1/2, and triggered apoptosis in HUT78 cells. In addition, a PP2A inhibitor blocked the PPZ-mediated dephosphorylation of Akt but did not affect that of ERK1/2. The pharmacological inhibition of Akt and ERK1/2 signaling revealed that Akt activity serves an important role in the survival of HUT78 cells. The present data suggested that suppressing Akt activity by PP2A activation may be an attractive antitumor strategy for NRAS-mutated Sezary syndrome.

13.
BMC Cancer ; 20(1): 1014, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33081727

ABSTRACT

BACKGROUND: Peritoneal metastasis (PM) in gastric cancer (GC) is characterized by diffusely infiltrating and proliferating cancer cells accompanied by extensive stromal fibrosis in the peritoneal space. The prognosis of GC with PM is still poor regardless of the various current treatments. In order to elucidate the cause of difficulties in PM treatment, we compared the tumor immune microenvironment (TME) in primary and PM lesions in GC. In addition, a PM model with fibrous stroma was constructed using immunocompetent mice to determine whether its TME was similar to that in patients. METHODS: Immuno-histochemical analyses of infiltrating immune cells were performed in paired primary and PM lesions from 28 patients with GC. A C57BL/6 J mouse model with PM was established using the mouse GC cell line YTN16 either with or without co-inoculation of mouse myofibroblast cell line LmcMF with α-SMA expression. The resected PM from each mouse model was analyzed the immunocompetent cells using immunohistochemistry. RESULTS: The number of CD8+ cells was significantly lower in PM lesions than in primary lesions (P < 0.01). Conversely, the number of CD163+ cells (M2 macrophages) was significantly higher in PM lesions than in primary lesions (P = 0.016). Azan staining revealed that YTN16 and LmcMF co-inoculated tumors were more fibrous than tumor with YTN16 alone (P < 0.05). Co-inoculated fibrous tumor also showed an invasive growth pattern and higher progression than tumor with YTN16 alone (P = 0.045). Additionally, YTN16 and LmcMF co-inoculated tumors showed lower infiltration of CD8+ cells and higher infiltration of M2 macrophages than tumors with YTN16 alone (P < 0.05, P < 0.05). These results indicate that LmcMF plays as cancer-associated fibroblasts (CAFs) by crosstalk with YTN16 and CAFs contribute tumor progression, invasion, fibrosis, and immune suppression. CONCLUSIONS: This model is the first immunocompetent mouse model similar to TME of human clinical PM with fibrosis. By using this model, new treatment strategies for PM, such as anti-CAFs therapies, may be developed.


Subject(s)
Actins/metabolism , CD8-Positive T-Lymphocytes/metabolism , Macrophages/metabolism , Myofibroblasts/cytology , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/surgery , Stomach Neoplasms/surgery , Actins/immunology , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Coculture Techniques , Female , Humans , Immunocompetence , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neoplasm Transplantation , Peritoneal Neoplasms/immunology , Stomach Neoplasms/immunology , Tumor Microenvironment
14.
Cancer Sci ; 111(12): 4371-4380, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32969571

ABSTRACT

Protein phosphatase 6 (PP6) is an essential serine/threonine protein phosphatase that acts as an important tumor suppressor. However, increased protein levels of PP6 have been observed in some cancer types, and they correlate with poor prognosis in glioblastoma. This raises a question about how PP6 protein levels are regulated in normal and transformed cells. In this study, we show that PP6 protein levels increase in response to pharmacologic and genetic inhibition of autophagy. PP6 associates with autophagic adaptor protein p62/SQSTM1 and is degraded in a p62-dependent manner. Accordingly, protein levels of PP6 and p62 fluctuate in concert under different physiological and pathophysiological conditions. Our data reveal that PP6 is regulated by p62-dependent autophagy and suggest that accumulation of PP6 protein in tumor tissues is caused at least partially by deficiency in autophagy.


Subject(s)
Autophagy/physiology , Phosphoprotein Phosphatases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Autophagy/drug effects , Autophagy/genetics , Cysteine Proteinase Inhibitors/pharmacology , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Leupeptins/pharmacology , Macrolides/pharmacology , Male , Mice , Mice, Inbred C57BL , Proteolysis , RNA-Binding Proteins/metabolism , Sequestosome-1 Protein/metabolism
15.
J Biochem ; 168(6): 643-650, 2020 Dec 26.
Article in English | MEDLINE | ID: mdl-32663263

ABSTRACT

Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells with ability to self-replicate and differentiate into mesodermal derivatives, such as adipocytes and osteoblasts. BM-MSCs are a critical component of the tumour microenvironment. They support tumour progression by recruiting additional BM-MSCs and by differentiating into myofibroblasts (also called cancer-associated fibroblasts). Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase that regulates a broad range of cellular signalling. PP2A forms a heterotrimer to dephosphorylate specific substrates. The reversible methylesterification (methylation) of Leu309 in the catalytic subunit of PP2A (PP2Ac) regulates biogenesis of the PP2A holoenzyme. It is unknown whether the methylation of PP2Ac plays a role in BM-MSC differentiation. Our experiments determined that protein levels of PP2A subunits and PP2A methyltransferase (LCMT-1) are significantly altered during differentiation. PP2Ac methylation levels in BM-MSCs decrease over time in response to an adipogenic differentiation stimulus. However, blockage of PP2A demethylation using the PP2A dimethyl-esterase inhibitors enhanced adipocyte differentiation. This suggests that PP2Ac demethylation is involved in adipocyte differentiation resistance. The results of our study provide a greater understanding of the regulation of BM-MSCs differentiation by PP2A holoenzyme.


Subject(s)
Adipogenesis , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells/cytology , Protein Phosphatase 2/metabolism , Animals , Cells, Cultured , Male , Mesenchymal Stem Cells/metabolism , Methylation , Mice , Mice, Inbred C57BL
16.
J Vet Med Sci ; 81(10): 1424-1430, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31527340

ABSTRACT

Osteosarcoma (OSA) is the most common bone tumor in dogs. Protein phosphatase 2A (PP2A), an evolutionary conserved serine/threonine protein phosphatase, is a crucial tumor suppressor. SET is a PP2A inhibitory protein that directly interacts with PP2A and suppresses its phosphatase activity. SET has been reported as a contributor of wide range of human and dog tumor malignancies. However, the role of SET in canine OSA (cOSA) remains unknown. In this study, we investigated the role of SET in cOSA by using 2 cOSA cell lines: POS (primary origin) and HM-POS (metastatic origin). Knockdown (KD) of SET expression was noted to slightly suppress POS cell proliferation only. Furthermore, SET KD effectively suppressed colony formation ability of both POS and HM-POS cells. SET KD was observed to repress ERK1/2, mTOR, E2F1, and NF-κB signaling in HM-POS cells, whereas it inhibited only ERK1/2 signaling in POS. Further, it was observed that SET-targeting drug, FTY720, exerted anti-cancer effects in both POS and HM-POS cells. Moreover, the drug also enhanced the anti-cancer effect of cisplatin. The data suggested that a combination therapy, based on SET targeting drugs and cisplatin, could be a potent strategy for cOSA.


Subject(s)
Bone Neoplasms/veterinary , Calcineurin Inhibitors/pharmacology , Osteosarcoma/veterinary , Protein Phosphatase 2/metabolism , Animals , Anticarcinogenic Agents/pharmacology , Bone Neoplasms/drug therapy , Calcineurin Inhibitors/therapeutic use , Cell Line, Tumor , Cisplatin/pharmacology , Dogs , Drug Synergism , Fingolimod Hydrochloride/pharmacology , Osteosarcoma/drug therapy , Signal Transduction/drug effects
17.
PLoS One ; 14(9): e0222845, 2019.
Article in English | MEDLINE | ID: mdl-31557212

ABSTRACT

SET (also called I2PP2A and TIF-1) is a multi-functional protein that regulates a variety of cell signaling including nucleosome assembly, histone binding, and tumorigenesis. Elevated SET protein levels are observed in various human tumors, and are correlated with poor prognosis and drug-resistance. We recently reported that SET protein levels in cancer cells were positively correlated with poor prognosis of gastric cancer patients. Using immunohistochemistry, SET protein was observed not only in cancer cells, but also in some interstitial cells. However, the tissue distribution of SET has not been investigated. Here we performed co-immunofluorescent staining to characterize SET protein distribution in gastrointestinal tissues. We found that even though the positive rate is much lower than epithelial cells, SET protein is also expressed in non-epithelial cells, such as monocytes/macrophages, neural cells, myofibroblasts, and smooth muscle cells. Our results indicate an extensive role of SET in a variety of cell types.


Subject(s)
DNA-Binding Proteins/analysis , Gastrointestinal Tract/metabolism , Histone Chaperones/analysis , Adult , DNA-Binding Proteins/metabolism , Female , Gastrointestinal Tract/cytology , Histone Chaperones/metabolism , Humans , Immunohistochemistry
18.
Biochim Biophys Acta Mol Cell Res ; 1866(1): 74-82, 2019 01.
Article in English | MEDLINE | ID: mdl-30036567

ABSTRACT

This review presents the accumulating evidence for the roles of protein phosphatase 6 (PP6) in cell cycle, DNA damage repair, inflammatory signaling, lymphocyte development, virus infection, tumor formation/progression, cell/tissue size, and non-coding RNA-mediated regulation. PP6 is an evolutionarily conserved and ubiquitously expressed Ser/Thr protein phosphatase most closely related to protein phosphatase 2A (PP2A) and protein phosphatase 4 (PP4). Although abundantly expressed in cells with multiple roles in cellular signaling, PP6 has received less attention than its close relative PP2A. Many studies used okadaic acid as "PP2A" inhibitor, even though these toxins also inhibit PP6 activity, so effects of the inhibitor could have been due to inhibition of both phosphatases. PP6 has its own dedicated subunits that assemble into heterotrimers that presumably fulfill its discrete functions in cells.


Subject(s)
Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/physiology , Cell Cycle/physiology , Cell Size , DNA Repair/physiology , Gene Expression Regulation , Inflammation/metabolism , Lymphocytes/metabolism , Neoplasms/metabolism , RNA, Untranslated/metabolism , Signal Transduction , Virus Diseases/metabolism
19.
FEBS Open Bio ; 8(9): 1486-1496, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30186749

ABSTRACT

Reversible methyl-esterification (methylation) of Leu309 in the protein phosphatase 2A catalytic subunit (PP2Ac) is essential for proper biogenesis of the PP2A holoenzyme. Accumulating evidence links PP2Ac methylation to diseases, including cancer and neurodegenerative disorders. Protein phosphatase methyl-esterase (PME-1) specifically catalyzes PP2Ac demethylation. We demonstrate that PP2Ac is demethylated in cell extracts even at 0 °C unless prevented by a PME-1 methyl-esterase inhibitor. This promotes dissociation of PP2A heterotrimers with B55 or PR72 subunits, but not those with B56 subunits. These results reveal differential sensitivity of ABC heterotrimers to methylation status of the C subunit. Our study advocates caution when interpreting earlier findings, offers an effective protocol for preserving PP2A complexes, and reveals key distinctions between B subunits and their interactions with the AC core dimer of PP2A.

20.
Int J Mol Sci ; 19(4)2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29642386

ABSTRACT

Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air-liquid interface (ALI) method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU) and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61) decreases the cell viability of organoids compared with Notch (YO-01027, DAPT) and Wnt (WAV939, Wnt-C59) signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.


Subject(s)
Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm , Hedgehog Proteins/antagonists & inhibitors , Organoids/drug effects , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Fluorouracil/pharmacology , HCT116 Cells , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Irinotecan , Neoplastic Stem Cells/drug effects , Organoplatinum Compounds/pharmacology , Oxaliplatin , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , trans-1,4-Bis(2-chlorobenzaminomethyl)cyclohexane Dihydrochloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...