Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 26(25): 3001-3009, 2020.
Article in English | MEDLINE | ID: mdl-32303171

ABSTRACT

Although the morbidity of ulcers is statistically higher in males than females, the mechanism of this difference remains unknown. Recent studies show that duodenal HCO3 - response to mucosal acidification is higher in females than males, and this may be a factor responsible for the sex difference in the mucosal protective mechanisms. In this article, we examined the duodenal HCO3 - responses to various stimuli in male and female rats, including estrogen, and reviewed the mechanisms responsible for the sex difference in the acid-induced HCO3 - secretion. Mucosal acidification was performed by exposing the duodenum to 10 mM HCl for 10 min. PGE2 was administered intravenously, while capsaicin was applied topically to the duodenum for 10 min. Tamoxifen was given s.c. 30 min before the acidification. Ovariectomy was performed 2 weeks before the experiments; half of the animals were given estrogen i.m. after the operation. Mucosal acidification increased duodenal HCO3 - secretion in male rats, and this response was inhibited by indomethacin and sensory deafferentation. Although no sex difference was found in HCO3 - responses to PGE2 and capsaicin, the response to acid was significantly greater in female than male rats. The different HCO3 - response to acid disappeared on ovariectomy, and this effect was totally reversed by the repeated administration of estrogen. The gene expression of ASIC3 in female rats was greater than in male rats and down-regulated by ovariectomy or tamoxifen treatment in an estradiol- dependent manner, while no sex difference was observed in TRPV1 and CFTR expressions. In conclusion, the acid-induced HCO3 - response is greater in female than male rats, and this phenomenon is not due to changes in PGE2 sensitivity or TRPV1/CFTR expressions but may be accounted for by increased expression of ASIC3 on sensory neurons, which is associated with the chronic influence of estrogen.


Subject(s)
Bicarbonates , Sex Characteristics , Animals , Duodenum , Female , Indomethacin/pharmacology , Intestinal Mucosa , Male , Rats , Rats, Sprague-Dawley
2.
Anim Sci J ; 84(1): 15-22, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23302077

ABSTRACT

Oocyte maturation in mammals is characterized by a dramatic reorganization of the endoplasmic reticulum (ER). In mice, the ER forms accumulations in the germinal vesicle (GV) stage and distinctive cortical clusters in metaphase II (MII) of the oocyte. Multiple evidence suggests that this ER distribution is important in preparing the oocyte for Ca(2+) oscillations, which trigger oocyte activation at fertilization. In this study, we investigated the time course and illustrated the possible functional role of ER distribution during maturation of porcine oocytes by immunostaining with protein disulfide isomerase (PDI). PDI forms clusters in the cytoplasm of oocytes. After immunostaining, PDI clusters were identified throughout the cytoplasm from the GV to metaphase I (MI) stage; however, at the MII stage, the PDI formed large clusters (1-2 µm) in the animal pole around the first polar body. PDI distribution was prevented by bacitracin, a PDI inhibitor. Our experiments indicated that, during porcine oocyte maturation, PDI undergoes a dramatic reorganization. This characteristic distribution is different from that in the mouse oocyte. Moreover, our study suggested that formation of PDI clusters in the animal pole is a specific characteristic of matured porcine oocytes.


Subject(s)
Oocytes/cytology , Oocytes/enzymology , Oogenesis/physiology , Protein Disulfide-Isomerases/metabolism , Animals , Bacitracin/pharmacology , Calcium Signaling/physiology , Cells, Cultured , Cytoplasm/enzymology , Endoplasmic Reticulum/metabolism , Fertilization , Metaphase , Mice , Oocytes/metabolism , Protein Disulfide-Isomerases/antagonists & inhibitors , Protein Disulfide-Isomerases/physiology , Swine
3.
Med Sci Monit ; 15(12): BR349-56, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19946223

ABSTRACT

BACKGROUND: We examined the effect of sparkling water on gastroduodenal HCO3- secretion in rats and investigated the factors involved in these responses. MATERIAL/METHODS: Under urethane anesthesia, a chambered stomach or a proximal duodenal loop was superfused with saline, and HCO3- secretion was measured at pH 7.0 using a pH-stat. RESULTS: The amount of CO2 in sparkling water was about 7.2 g/L. The mucosal exposure with sparkling water increased the secretion of HCO3- in both the stomach and duodenum. The HCO3- response in the duodenum was partially inhibited by indomethacin, acetazolamide or sensory deafferentation and was totally abolished by the co-administration of the former two agents. By contrast, the response in the stomach was almost totally inhibited by acetazolamide and partially mitigated by indomethacin but not sensory deafferentation. DIDS [an inhibitor of the Cl-/HCO3- exchanger (AE) and the Na+-HCO3- cotransporter (NBC)] and DMA [an inhibitor of the Na+/H+ exchanger 1 (NHE1)] partially mitigated the HCO3- response in the duodenum but not the stomach. The mucosal application of sparkling water increased prostaglandin E2 content in these tissues. CONCLUSIONS: Sparkling water stimulates HCO3- secretion in both the stomach and the duodenum, but the mechanisms involved differ in these two tissues; the response in the former is mainly due to the intracellular supply of HCO3- with the aid of carbonic anhydrase, while in the latter the response is dependent on the NHE1, AE and NBC, and is mediated by endogenous prostaglandins as well as capsaicin-sensitive afferent neurons, in addition to the intracellular supply of HCO3-.


Subject(s)
Bicarbonates/metabolism , Carbonated Beverages/toxicity , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Water/pharmacology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Acetazolamide/pharmacology , Afferent Pathways/drug effects , Afferent Pathways/physiology , Amiloride/analogs & derivatives , Amiloride/pharmacology , Animals , Capsaicin/pharmacology , Dinoprostone/metabolism , Duodenum/drug effects , Duodenum/metabolism , Indomethacin/pharmacology , Male , Rats , Rats, Sprague-Dawley
4.
J Pharmacol Exp Ther ; 326(3): 889-96, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18550692

ABSTRACT

(+/-)-(E)-4-Ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide] (NOR-3), a nitric-oxide (NO) donor, is known to increase HCO(3)(-) secretion in rat stomachs, intracellularly mediated by cGMP; yet, there is no information about the phosphodiesterase (PDE) isozyme involved in this process. We examined the effects of various isozyme-selective PDE inhibitors on the secretion of HCO(3)(-) in the mouse stomach in vitro and the type(s) of PDE isozymes involved in the response to NO. The gastric mucosa of DDY mice was stripped of the muscle layer and mounted on an Ussing chamber. HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. NOR-3, 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), and various PDE inhibitors were added to the serosal side. Vinpocetine (PDE1 inhibitor) or zaprinast (PDE5 inhibitor) was also added serosally 30 min before NOR-3 or 8-Br-cGMP. Both NOR-3 and 8-Br-cGMP stimulated HCO(3)(-) secretion in a dose-dependent manner, and the response to NOR-3 was significantly inhibited by methylene blue. Likewise, the secretion induced by NOR-3 or 8-Br-cGMP was significantly attenuated by 6-((2S,3S)-3-(4-chloro-2-methylphenylsulfonylaminomethyl)-bicyclo(2.2.2)octan-2-yl)-5Z-hexenoic acid (ONO-8711), the PGE receptor (EP)1 antagonist, as well as indomethacin and potentiated by both vinpocetine and zaprinast at doses that had no effect by themselves on the basal secretion, whereas other subtype-selective PDE inhibitors had no effect. NOR-3 increased the mucosal PGE(2) content in a methylene blue-inhibitable manner. These results suggest that NO stimulates gastric HCO(3)(-) secretion mediated intracellularly by cGMP and modified by both PDE1 and PDE5, and this response is finally mediated by endogenous PGE(2) via the activation of EP1 receptors.


Subject(s)
Gastric Mucosa/enzymology , Gastric Mucosa/metabolism , Phosphoric Diester Hydrolases/physiology , Animals , Bicarbonates/agonists , Bicarbonates/metabolism , Cyclooxygenase Inhibitors/pharmacology , Gastric Mucosa/drug effects , In Vitro Techniques , Isoenzymes/antagonists & inhibitors , Isoenzymes/physiology , Male , Mice , Phosphodiesterase Inhibitors/pharmacology , Stomach/drug effects , Stomach/enzymology
5.
Biochem Pharmacol ; 74(10): 1507-13, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17719564

ABSTRACT

We examined the effects of various isozyme-selective PDE inhibitors on HCO(3)(-) secretion in the mouse duodenum in vitro and investigated which type(s) of phosphodiesterase (PDE) isozymes are involved in the response to PGE(2) and NO. The duodenal mucosa of male DDY mice was stripped of the muscle layer and mounted on an Ussing chamber, and HCO(3)(-) secretion was measured at pH 7.0 by a pH-stat method using 2mM HCl. Both PGE(2) and NOR-3 (NO donor) increased HCO(3)(-) secretion in the mouse duodenum in vitro, and the response to PGE(2) was inhibited by both EP3 and EP4 antagonists but not EP1 antagonist, while that to NOR-3 was inhibited by methylene blue. IBMX, a nonselective PDE inhibitor, significantly increased basal HCO(3)(-) secretion and potentiated the responses to both PGE(2) and NOR-3. Likewise, vinpocetine (PDE1 inhibitor) and cilostamide (PDE3 inhibitor) also increased the basal secretion at high doses and potentiated the HCO(3)(-) response to PGE(2) at doses that had no effect by themselves on the basal secretion. By contrast, the HCO(3)(-) stimulatory action of NOR-3 was significantly potentiated by vinpocetine but not cilostamide. Inhibitors of other PDE subtypes had no effect on the HCO(3)(-) secretion under basal or stimulated conditions. Both PDE1 and PDE3 mRNAs were expressed in the duodenal mucosa. These results suggested that PDE1 and PDE3 are involved in the regulation of duodenal HCO(3)(-) secretion and that the response to PGE(2) is associated with both PDE1 and PDE3, while the response to NO is mainly modulated by PDE1.


Subject(s)
Bicarbonates/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Duodenum/metabolism , Animals , Dinoprostone/pharmacology , In Vitro Techniques , Intestinal Mucosa/metabolism , Isoenzymes/metabolism , Male , Mice , Mice, Inbred Strains , Nitric Oxide Donors/pharmacology , Nitro Compounds/pharmacology , Phosphodiesterase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...