Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
2.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38631913

ABSTRACT

The Helicobacter pylori Cag type IV secretion system (Cag T4SS) has an important role in the pathogenesis of gastric cancer. The Cag T4SS outer membrane core complex (OMCC) is organized into three regions: a 14-fold symmetric outer membrane cap (OMC) composed of CagY, CagX, CagT, CagM, and Cag3; a 17-fold symmetric periplasmic ring (PR) composed of CagY and CagX; and a stalk with unknown composition. We investigated how CagT, CagM, and a conserved antenna projection (AP) region of CagY contribute to the structural organization of the OMCC. Single-particle cryo-EM analyses showed that complexes purified from ΔcagT or ΔcagM mutants no longer had organized OMCs, but the PRs remained structured. OMCCs purified from a CagY antenna projection mutant (CagY∆AP) were structurally similar to WT OMCCs, except for the absence of the α-helical antenna projection. These results indicate that CagY and CagX are sufficient for maintaining a stable PR, but the organization of the OMC requires CagY, CagX, CagM, and CagT. Our results highlight an unexpected structural independence of two major subdomains of the Cag T4SS OMCC.


Subject(s)
Helicobacter pylori , Type IV Secretion Systems/chemistry , Periplasm
3.
Nat Struct Mol Biol ; 31(5): 777-790, 2024 May.
Article in English | MEDLINE | ID: mdl-38491139

ABSTRACT

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.


Subject(s)
Cryoelectron Microscopy , DNA Polymerase I , DNA Primase , DNA Replication , Models, Molecular , Xenopus laevis , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/genetics , DNA Polymerase I/metabolism , DNA Polymerase I/chemistry , Animals , Catalytic Domain , DNA/metabolism , DNA/chemistry , DNA/biosynthesis , DNA Primers/metabolism , DNA Primers/genetics , RNA/metabolism , RNA/chemistry , Protein Conformation
4.
J Mol Biol ; 436(4): 168432, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38161000

ABSTRACT

Helicobacter pylori colonizes the stomach in about half of the human population, leading to an increased risk of peptic ulcer disease and gastric cancer. H. pylori secretes an 88 kDa VacA toxin that contributes to pathogenesis. VacA assembles into oligomeric complexes in solution and forms anion-selective channels in cell membranes. Cryo-electron microscopy (cryo-EM) analyses of VacA oligomers in solution provided insights into VacA oligomerization but failed to reveal the structure of the hydrophobic N-terminal region predicted to be a pore-forming domain. In this study, we incubated VacA with liposomes and used single particle cryo-EM to analyze detergent-extracted VacA oligomers. A 3D structure of detergent-solubilized VacA hexamers revealed the presence of six α-helices extending from the center of the oligomers, a feature not observed in previous studies of water-soluble VacA oligomers. Cryo-electron tomography analysis and 2D averages of VacA associated with liposomes confirmed that central regions of the membrane-associated VacA oligomers can insert into the lipid bilayer. However, insertion is heterogenous, with some membrane-associated oligomers appearing only partially inserted and others sitting on top of the bilayer. These studies indicate that VacA undergoes a conformational change when contacting the membrane and reveal an α-helical region positioned to extend into the membrane. Although the reported VacA 3D structure does not represent a selective anion channel, our combined single particle 3D analysis, cryo-electron tomography, and modeling allow us to propose a model for the structural organization of the VacA N-terminus in the context of a hexamer as it inserts into the membrane.


Subject(s)
Bacterial Proteins , Helicobacter pylori , Toxins, Biological , Voltage-Dependent Anion Channels , Humans , Bacterial Proteins/chemistry , Cryoelectron Microscopy/methods , Detergents , Helicobacter pylori/chemistry , Liposomes/chemistry , Toxins, Biological/chemistry , Voltage-Dependent Anion Channels/chemistry , Protein Multimerization
5.
Nat Struct Mol Biol ; 30(7): 902-913, 2023 07.
Article in English | MEDLINE | ID: mdl-37264140

ABSTRACT

Folding of nascent transcripts can be modulated by the RNA polymerase (RNAP) that carries out their transcription, and vice versa. A pause of RNAP during transcription of a preQ1 riboswitch (termed que-PEC) is stabilized by a previously characterized template consensus sequence and the ligand-free conformation of the nascent RNA. Ligand binding to the riboswitch induces RNAP pause release and downstream transcription termination; however, the mechanism by which riboswitch folding modulates pausing is unclear. Here, we report single-particle cryo-electron microscopy reconstructions of que-PEC in ligand-free and ligand-bound states. In the absence of preQ1, the RNA transcript is in an unexpected hyper-translocated state, preventing downstream nucleotide incorporation. Strikingly, on ligand binding, the riboswitch rotates around its helical axis, expanding the surrounding RNAP exit channel and repositioning the transcript for elongation. Our study reveals the tight coupling by which nascent RNA structures and their ligands can functionally regulate the macromolecular transcription machinery.


Subject(s)
Escherichia coli Proteins , Riboswitch , RNA, Bacterial/chemistry , Ligands , Cryoelectron Microscopy , Escherichia coli Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Transcription, Genetic , RNA Folding , Bacteria/metabolism , Nucleic Acid Conformation
6.
Biochemistry ; 62(11): 1725-1734, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37130292

ABSTRACT

Dicer is an RNase III enzyme that is responsible for the maturation of small RNAs such as microRNAs. As Dicer's cleavage products play key roles in promoting cellular homeostasis through the fine-tuning of gene expression, dysregulation of Dicer activity can lead to several human diseases, including cancers. Mutations in Dicer have been found to induce tumorigenesis and lead to the development of a rare pleiotropic tumor predisposition syndrome found in children and young adults called DICER1 syndrome. These patients harbor germline and somatic mutations in Dicer that lead to defective microRNA processing and activity. While most mutations occur within Dicer's catalytic RNase III domains, alterations within the Platform-PAZ (Piwi-Argonaute-Zwille) domain also cause loss of microRNA production. Using a combination of in vitro biochemical and cellular studies, we characterized the effect of disease-relevant Platform-PAZ-associated mutations on the processing of a well-studied oncogenic microRNA, pre-microRNA-21. We then compared these results to those of a representative from another Dicer substrate class, the small nucleolar RNA, snord37. From this analysis, we provide evidence that mutations within the Platform-PAZ domain result in differential impacts on RNA binding and processing, adding new insights into the complexities of Dicer processing of small RNA substrates.


Subject(s)
MicroRNAs , RNA, Small Nucleolar , Child , Humans , RNA, Small Nucleolar/genetics , Ribonuclease III/chemistry , MicroRNAs/chemistry , Mutation , DEAD-box RNA Helicases/genetics
7.
J Biol Chem ; 299(4): 104574, 2023 04.
Article in English | MEDLINE | ID: mdl-36870682

ABSTRACT

Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.


Subject(s)
Caveolin 1 , Caveolins , Disease , Humans , Caveolae/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Caveolins/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Mutation , Protein Subunits/metabolism , Disease/genetics
8.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-36993335

ABSTRACT

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.

9.
Biochemistry ; 62(1): 1-16, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36534787

ABSTRACT

The RNase III endoribonuclease Dicer was discovered to be associated with cleavage of double-stranded RNA in 2001. Since then, many advances in our understanding of Dicer function have revealed that the enzyme plays a major role not only in microRNA biology but also in multiple RNA interference-related pathways. Yet, there is still much to be learned regarding Dicer structure-function in relation to how Dicer and Dicer-like enzymes initiate their cleavage reaction and release the desired RNA product. This Perspective describes the latest advances in Dicer structural studies, expands on what we have learned from this data, and outlines key gaps in knowledge that remain to be addressed. More specifically, we focus on human Dicer and highlight the intermediate processing steps where there is a lack of structural data to understand how the enzyme traverses from pre-cleavage to cleavage-competent states. Understanding these details is necessary to model Dicer's function as well as develop more specific microRNA-targeted therapeutics for the treatment of human diseases.


Subject(s)
MicroRNAs , Ribonuclease III , Humans , Ribonuclease III/chemistry , MicroRNAs/chemistry , RNA, Double-Stranded
10.
J Membr Biol ; 255(4-5): 375-383, 2022 10.
Article in English | MEDLINE | ID: mdl-35972526

ABSTRACT

Caveolins are an unusual family of membrane proteins whose primary biological function is to build small invaginated membrane structures at the surface of cells known as caveolae. Caveolins and caveolae regulate numerous signaling pathways, lipid homeostasis, intracellular transport, cell adhesion, and cell migration. They also serve as sensors and protect the plasma membrane from mechanical stress. Despite their many important functions, the molecular basis for how these 50-100 nm "little caves" are assembled and regulate cell physiology has perplexed researchers for 70 years. One major impediment to progress has been the lack of information about the structure of caveolin complexes that serve as building blocks for the assembly of caveolae. Excitingly, recent advances have finally begun to shed light on this long-standing question. In this review, we highlight new developments in our understanding of the structure of caveolin oligomers, including the landmark discovery of the molecular architecture of caveolin-1 complexes using cryo-electron microscopy.


Subject(s)
Caveolae , Caveolin 1 , Caveolin 1/metabolism , Cryoelectron Microscopy , Caveolae/metabolism , Membrane Proteins/metabolism , Cell Membrane/metabolism , Lipids
11.
PLoS Pathog ; 18(8): e1010720, 2022 08.
Article in English | MEDLINE | ID: mdl-35951533

ABSTRACT

Bacterial type IV secretion systems (T4SSs) are a versatile group of nanomachines that can horizontally transfer DNA through conjugation and deliver effector proteins into a wide range of target cells. The components of T4SSs in gram-negative bacteria are organized into several large subassemblies: an inner membrane complex, an outer membrane core complex, and, in some species, an extracellular pilus. Cryo-electron tomography has been used to define the structures of T4SSs in intact bacteria, and high-resolution structural models are now available for isolated core complexes from conjugation systems, the Xanthomonas citri T4SS, the Helicobacter pylori Cag T4SS, and the Legionella pneumophila Dot/Icm T4SS. In this review, we compare the molecular architectures of these T4SSs, focusing especially on the structures of core complexes. We discuss structural features that are shared by multiple T4SSs as well as evolutionary strategies used for T4SS diversification. Finally, we discuss how structural variations among T4SSs may confer specialized functional properties.


Subject(s)
Helicobacter pylori , Legionella pneumophila , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Electron Microscope Tomography , Helicobacter pylori/metabolism , Legionella pneumophila/metabolism , Type IV Secretion Systems/genetics
12.
Sci Adv ; 8(19): eabn7232, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35544577

ABSTRACT

Membrane-sculpting proteins shape the morphology of cell membranes and facilitate remodeling in response to physiological and environmental cues. Complexes of the monotopic membrane protein caveolin function as essential curvature-generating components of caveolae, flask-shaped invaginations that sense and respond to plasma membrane tension. However, the structural basis for caveolin's membrane remodeling activity is currently unknown. Here, we show that, using cryo-electron microscopy, the human caveolin-1 complex is composed of 11 protomers organized into a tightly packed disc with a flat membrane-embedded surface. The structural insights suggest a previously unrecognized mechanism for how membrane-sculpting proteins interact with membranes and reveal how key regions of caveolin-1, including its scaffolding, oligomerization, and intramembrane domains, contribute to its function.

13.
Infect Immun ; 89(12): e0034821, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34543122

ABSTRACT

Helicobacter pylori VacA is a secreted toxin that assembles into water-soluble oligomeric structures and forms anion-selective membrane channels. Acidification of purified VacA enhances its activity in cell culture assays. Sites of protomer-protomer contact within VacA oligomers have been identified by cryoelectron microscopy, and in the current study, we validated several of these interactions by chemical cross-linking and mass spectrometry. We then mutated amino acids at these contact sites and analyzed the effects of the alterations on VacA oligomerization and activity. VacA proteins with amino acid charge reversals at interprotomer contact sites retained the capacity to assemble into water-soluble oligomers and retained cell-vacuolating activity. Introduction of paired cysteine substitutions at these sites resulted in formation of disulfide bonds between adjacent protomers. Negative-stain electron microscopy and single-particle two-dimensional class analysis revealed that wild-type VacA oligomers disassemble when exposed to acidic pH, whereas the mutant proteins with paired cysteine substitutions retain an oligomeric state at acidic pH. Acid-activated wild-type VacA caused vacuolation of cultured cells, whereas acid-activated mutant proteins with paired cysteine substitutions lacked cell-vacuolating activity. Treatment of these mutant proteins with both low pH and a reducing agent resulted in VacA binding to cells, VacA internalization, and cell vacuolation. Internalization of a nonoligomerizing mutant form of VacA by host cells was detected without a requirement for acid activation. Collectively, these results enhance our understanding of the molecular interactions required for VacA oligomerization and support a model in which toxin activity depends on interactions of monomeric VacA with host cells.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Protein Conformation , Protein Multimerization , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Protein Binding , Protein Interaction Domains and Motifs , Structure-Activity Relationship
14.
Elife ; 102021 09 14.
Article in English | MEDLINE | ID: mdl-34519271

ABSTRACT

Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia known as Legionnaires' disease. The pathology associated with infection depends on bacterial delivery of effector proteins into the host via the membrane spanning Dot/Icm type IV secretion system (T4SS). We have determined sub-3.0 Å resolution maps of the Dot/Icm T4SS core complex by single particle cryo-EM. The high-resolution structural analysis has allowed us to identify proteins encoded outside the Dot/Icm genetic locus that contribute to the core T4SS structure. We can also now define two distinct areas of symmetry mismatch, one that connects the C18 periplasmic ring (PR) and the C13 outer membrane cap (OMC) and one that connects the C13 OMC with a 16-fold symmetric dome. Unexpectedly, the connection between the PR and OMC is DotH, with five copies sandwiched between the OMC and PR to accommodate the symmetry mismatch. Finally, we observe multiple conformations in the reconstructions that indicate flexibility within the structure.


Subject(s)
Bacterial Proteins/isolation & purification , Cryoelectron Microscopy/methods , Legionella pneumophila/chemistry , Bacterial Proteins/chemistry , Protein Conformation , Species Specificity , Type IV Secretion Systems/chemistry
15.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33893233

ABSTRACT

Peripheral myelin protein (PMP22) is an integral membrane protein that traffics inefficiently even in wild-type (WT) form, with only 20% of the WT protein reaching its final plasma membrane destination in myelinating Schwann cells. Misfolding of PMP22 has been identified as a key factor in multiple peripheral neuropathies, including Charcot-Marie-Tooth disease and Dejerine-Sottas syndrome. While biophysical analyses of disease-associated PMP22 mutants show altered protein stabilities, leading to reduced surface trafficking and loss of PMP22 function, it remains unclear how destabilization of PMP22 mutations causes mistrafficking. Here, native ion mobility-mass spectrometry (IM-MS) is used to compare the gas phase stabilities and abundances for an array of mutant PM22 complexes. We find key differences in the PMP22 mutant stabilities and propensities to form homodimeric complexes. Of particular note, we observe that severely destabilized forms of PMP22 exhibit a higher propensity to dimerize than WT PMP22. Furthermore, we employ lipid raft-mimicking SCOR bicelles to study PMP22 mutants, and find that the differences in dimer abundances are amplified in this medium when compared to micelle-based data, with disease mutants exhibiting up to 4 times more dimer than WT when liberated from SCOR bicelles. We combine our findings with previous cellular data to propose that the formation of PMP22 dimers from destabilized monomers is a key element of PMP22 mistrafficking.


Subject(s)
Myelin Proteins/metabolism , Peripheral Nervous System Diseases/physiopathology , Protein Transport/physiology , Cell Membrane/metabolism , Humans , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Membrane Proteins/metabolism , Myelin Proteins/genetics , Myelin Proteins/physiology , Peripheral Nervous System Diseases/diagnostic imaging , Peripheral Nervous System Diseases/metabolism , Protein Folding , Protein Stability , Schwann Cells/metabolism
16.
J Mol Biol ; 433(16): 166909, 2021 08 06.
Article in English | MEDLINE | ID: mdl-33676924

ABSTRACT

Structural studies of membrane proteins, especially small membrane proteins, are associated with well-known experimental challenges. Complexation with monoclonal antibody fragments is a common strategy to augment such proteins; however, generating antibody fragments that specifically bind a target protein is not trivial. Here we identify a helical epitope, from the membrane-proximal external region (MPER) of the gp41-transmembrane subunit of the HIV envelope protein, that is recognized by several well-characterized antibodies and that can be fused as a contiguous extension of the N-terminal transmembrane helix of a broad range of membrane proteins. To analyze whether this MPER-epitope tag might aid structural studies of small membrane proteins, we determined an X-ray crystal structure of a membrane protein target that does not crystallize without the aid of crystallization chaperones, the Fluc fluoride channel, fused to the MPER epitope and in complex with antibody. We also demonstrate the utility of this approach for single particle electron microscopy with Fluc and two additional small membrane proteins that represent different membrane protein folds, AdiC and GlpF. These studies show that the MPER epitope provides a structurally defined, rigid docking site for antibody fragments that is transferable among diverse membrane proteins and can be engineered without prior structural information. Antibodies that bind to the MPER epitope serve as effective crystallization chaperones and electron microscopy fiducial markers, enabling structural studies of challenging small membrane proteins.


Subject(s)
Epitopes/chemistry , Membrane Proteins/chemistry , Models, Molecular , Protein Interaction Domains and Motifs , Crystallography, X-Ray , Epitopes/immunology , Humans , Membrane Proteins/immunology , Microscopy, Electron , Protein Conformation , Structure-Activity Relationship
17.
Cell Rep ; 33(12): 108526, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33357436

ABSTRACT

Many eukaryotes assemble an actin- and myosin-based cytokinetic ring (CR) on the plasma membrane (PM) for cell division, but how it is anchored there remains unclear. In Schizosaccharomyces pombe, the F-BAR protein Cdc15 links the PM via its F-BAR domain to proteins in the CR's interior via its SH3 domain. However, Cdc15's F-BAR domain also directly binds formin Cdc12, suggesting that Cdc15 may polymerize a protein network directly adjacent to the membrane. Here, we determine that the F-BAR domain binds Cdc12 using residues on the face opposite its membrane-binding surface. These residues also bind paxillin-like Pxl1, promoting its recruitment with calcineurin to the CR. Mutation of these F-BAR domain residues results in a shallower CR, with components localizing ∼35% closer to the PM than in wild type, and aberrant CR constriction. Thus, F-BAR domains serve as oligomeric membrane-bound platforms that can modulate the architecture of an entire actin structure.


Subject(s)
Cell Cycle Proteins/metabolism , Cytokinesis/genetics , Cytoskeleton/metabolism , GTP-Binding Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Humans , Schizosaccharomyces
18.
Cell ; 183(7): 1884-1900.e23, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33301709

ABSTRACT

Eastern equine encephalitis virus (EEEV) is one of the most virulent viruses endemic to North America. No licensed vaccines or antiviral therapeutics are available to combat this infection, which has recently shown an increase in human cases. Here, we characterize human monoclonal antibodies (mAbs) isolated from a survivor of natural EEEV infection with potent (<20 pM) inhibitory activity of EEEV. Cryo-electron microscopy reconstructions of two highly neutralizing mAbs, EEEV-33 and EEEV-143, were solved in complex with chimeric Sindbis/EEEV virions to 7.2 Å and 8.3 Å, respectively. The mAbs recognize two distinct antigenic sites that are critical for inhibiting viral entry into cells. EEEV-33 and EEEV-143 protect against disease following stringent lethal aerosol challenge of mice with highly pathogenic EEEV. These studies provide insight into the molecular basis for the neutralizing human antibody response against EEEV and can facilitate development of vaccines and candidate antibody therapeutics.


Subject(s)
Aerosols/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Encephalitis Virus, Eastern Equine/immunology , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/prevention & control , Adult , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Cryoelectron Microscopy , Disease Models, Animal , Encephalitis Virus, Eastern Equine/ultrastructure , Encephalomyelitis, Equine/virology , Epitopes/chemistry , Female , Glycoproteins/immunology , Humans , Mice , Models, Molecular , Mutagenesis/genetics , Neutralization Tests , Protein Binding , Protein Domains , Recombinant Proteins/immunology , Sindbis Virus/immunology , Virion/immunology , Virion/ultrastructure , Virus Internalization
19.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: mdl-33268374

ABSTRACT

Highly stable oligomeric complexes of the monotopic membrane protein caveolin serve as fundamental building blocks of caveolae. Current evidence suggests these complexes are disc shaped, but the details of their structural organization and how they assemble are poorly understood. Here, we address these questions using single particle electron microscopy of negatively stained recombinant 8S complexes of human caveolin 1. We show that 8S complexes are toroidal structures ~15 nm in diameter that consist of an outer ring, an inner ring, and central protruding stalk. Moreover, we map the position of the N and C termini and determine their role in complex assembly, and visualize the 8S complexes in heterologous caveolae. Our findings provide critical insights into the structural features of 8S complexes and allow us to propose a model for how these highly stable membrane-embedded complexes are generated.

20.
Elife ; 92020 09 02.
Article in English | MEDLINE | ID: mdl-32876045

ABSTRACT

Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia Legionnaires' Disease. This infection and subsequent pathology require the Dot/Icm Type IV Secretion System (T4SS) to deliver effector proteins into host cells. Compared to prototypical T4SSs, the Dot/Icm assembly is much larger, containing ~27 different components including a core complex reported to be composed of five proteins: DotC, DotD, DotF, DotG, and DotH. Using single particle cryo-electron microscopy (cryo-EM), we report reconstructions of the core complex of the Dot/Icm T4SS that includes a symmetry mismatch between distinct structural features of the outer membrane cap (OMC) and periplasmic ring (PR). We present models of known core complex proteins, DotC, DotD, and DotH, and two structurally similar proteins within the core complex, DotK and Lpg0657. This analysis reveals the stoichiometry and contact interfaces between the key proteins of the Dot/Icm T4SS core complex and provides a framework for understanding a complex molecular machine.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Legionella pneumophila/chemistry , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/ultrastructure , Cryoelectron Microscopy , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...