Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Org Biomol Chem ; 22(20): 4077-4088, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38629338

ABSTRACT

Photochromism through excited-state intermolecular proton transfer (ESInterPT) processes based on keto-enol tautomerization was found in phenazine-2,3-diol PD1 and its monoalkoxy derivative PD2 in a glassy matrix at 77 K: the colorless solutions of enol forms PD1-E and PD2-E at 298 K transformed into orange-colored solutions of keto forms PD1-K and PD2-K upon photoirradiation (λ = 385 nm) at 77 K. Furthermore, this report is the first to achieve the single-crystal X-ray structural analyses of phenazine-2,3-diol PD1 and its monoalkoxy derivative PD2, since the report on the synthesis of PD1 70 years ago. Indeed, it was found that PD1 and PD2 molecules exist in the keto form (PD1-K) and the enol form (PD2-E), respectively, in the crystal, and the neighboring PD1-K and PD2-E molecules are linked by one-dimensional intermolecular NH⋯O and OH⋯N hydrogen bonding, respectively. The fact suggests strongly that for PD1 and PD2, the formation of continuous intermolecular hydrogen bonding in aggregates such as in a glassy matrix at 77 K is involved in the keto-enol tautomerization of phenazine-2,3-diol derivatives based on ESInterPT. More interestingly, the color and the photoabsorption spectrum of the solids obtained by sublimation of crystals of PD2-E are similar to those for the crystals of PD1-K, indicating that the PD2 molecule exists in the keto form (PD2-K) in the solid of the sublimate. Therefore, this study provides a valuable insight for a greater understanding of the keto-enol tautomerization of diazaacene-diol derivatives and their photophysical properties in the solution and in the solid state.

2.
Org Biomol Chem ; 21(25): 5194-5202, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37161772

ABSTRACT

Phenazine-2,3-diol-based dyes, KY-1Na and KY-2Na bearing one and two carboxylic acid sodium salts, respectively, have been newly developed as water-soluble photosensitizers (PSs) possessing the ability to generate singlet oxygen (1O2). In order to evaluate the solubility of KY-1Na and KY-2Na in water, the hydrophobicity/hydrophilicity of the two PSs was investigated by experimental measurement of the logarithms (log Po/w) of the 1-octanol/water partition coefficient (Po/w) for the PS. The log Po/w values of both KY-1Na and KY-2Na were determined to be -0.9, indicating that both the PSs are more hydrophilic than Rose Bengal (-0.6) and have hydrophilicity equivalent to methylene blue (-0.9). Both the PSs in water show a broad photoabsorption band in the range of 500 to 600 nm. Thus, we estimated the 1O2 quantum yields (ΦΔ) of KY-1Na and KY-2Na in water by using 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA) as a water-soluble 1O2 scavenger. It was found that in water the ΦΔ value (0.19) of KY-2Na is higher than that of KY-1Na (0.06). Density functional theory (DFT) calculations suggested that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) distributions for the molecular structure of KY-2Na are adequately separated, leading to a decrease in the energy gap (ΔEST) between the singlet state (S1) and the triplet state (T1) that causes efficient intersystem crossing (ISC), compared to that for the molecular structure of KY-1Na. Indeed, time-dependent DFT (TD-DFT) calculations demonstrated that the ΔEST(S1-T1) value (0.82 eV) of KY-2Na is smaller than that (0.98 eV) of KY-1Na, resulting in a relatively high ΦΔ value of KY-2Na. Consequently, we demonstrate that phenazine-2,3-diol-based PSs bearing carboxylic acid salts possess high solubility and moderate 1O2 generation ability in water.

3.
J Org Chem ; 87(23): 15762-15770, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36378160

ABSTRACT

Molecular photoswitches have been widely used as molecular machines in various fields due to the small structures and simple motions generated in reversible isomerization. However, common photoswitches, as represented by azobenzene (AB), cannot combine both large motions and high thermal stability, which are critically important for some practical applications in addition to high photoisomerization yields. Here, we focus on a promising photoswitch, stiff stilbene (SS), and its derivative, sterically hindered SS (HSS). The detailed investigation of their performance with a comparison to AB demonstrated that HSS is an outstanding photoswitch offering larger motions than AB and SS, ca. 90% photoisomerization in both E-to-Z and Z-to-E directions, and significantly high thermal stability with a half-life of ca. 1000 years at room temperature. The superior performance of HSS promises its use in various applications, even where previous photoswitches have troubles and are unavailable.


Subject(s)
Stilbenes , Azo Compounds/chemistry
4.
Beilstein J Org Chem ; 18: 1047-1054, 2022.
Article in English | MEDLINE | ID: mdl-36105734

ABSTRACT

The (D-π)2-type fluorescent dye OTT-2 with two (diphenylamino)carbazole-thiophene units as D (electron-donating group)-π (π-conjugated bridge) moiety and the (D-π)2Ph-type fluorescent dye OTK-2 with the two D-π moieties connected through a phenyl ring were derived by oxidative homocoupling of a stannyl D-π unit and Stille coupling of a stannyl D-π unit with 1,3-diiodobenzene, respectively. Their optical and electrochemical properties were investigated by photoabsorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, cyclic voltammetry (CV) and molecular orbital (MO) calculations. In toluene the photoabsorption and fluorescence maximum wavelengths (λmax,abs and λmax,fl) of OTT-2 appear in a longer wavelength region than those of OTK-2. The fluorescence quantum yield (Φfl) of OTT-2 is 0.41, which is higher than that (Φfl = 0.36) of OTK-2. In the solid state OTT-2 shows relatively intense fluorescence properties (Φfl-solid = 0.24 nm), compared with OTK-2 (Φfl-solid = 0.15 nm). CV results demonstrated that OTT-2 and OTK-2 exhibit a reversible oxidation wave. Based on photoabsorption, fluorescence spectroscopy and CV for the two dyes, it was found that the lowest unoccupied molecular orbital (LUMO) energy level of OTT-2 is lower than that of OTK-2, but OTT-2 and OTK-2 have comparable highest occupied molecular orbital (HOMO) energy levels. Consequently, this work reveals that compared to the (D-π)2Ph-type structure, the (D-π)2-type structure exhibits not only a bathochromic shift of the photoabsorption band, but also intense fluorescence emission both in solution and the solid state.

5.
RSC Adv ; 10(56): 33836-33843, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519071

ABSTRACT

A propeller-structured 3,5,8-trithienyl-BODIPY-type pyridine-boron trifluoride complex, ST-3-BF3, which has three units of 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile at the 3-, 5-, and 8-positions on the BODIPY skeleton, was designed and developed as an intramolecular charge transfer (ICT)-type optical sensor for the detection of a trace amount of water in acetonitrile. The characterization of ST-3-BF3 was successfully determined by FTIR, 1H and 11B NMR measurements, high-resolution mass spectrometry (HRMS) analysis, thermogravimetry-differential thermal analysis (TG-DTA), photoabsorption and fluorescence spectral measurements, and density functional theory (DFT) calculations. ST-3-BF3 showed a broad photoabsorption band in the range of 600 to 800 nm, which is assigned to the S0 → S1 transition of the BODIPY skeleton with the expanded π-conjugated system over the 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile units at the 3-, 5-, and 8-positions onto the BODIPY core. In addition, a photoabsorption band was also observed in the range of 300 to 550 nm, which can be assigned to the ICT band between the 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile units at 3-, 5-, and 8-positions and the BODIPY core. ST-3-BF3 exhibited a characteristic fluorescence band originating from the BODIPY skeleton at around 730 nm. It was found that by addition of a trace amount of water to the acetonitrile solution of ST-3-BF3, the photoabsorption band at around 415 nm and the fluorescence band at around 730 nm increased linearly as a function of the water content below only 0.2 wt%, which could be ascribed to the change in the ICT characteristics due to the dissociation of ST-3-BF3 into ST-3 by water molecules. Thus, this work demonstrated that the 3,5,8-trithienyl-BODIPY-type pyridine-boron trifluoride complex can act as a highly-sensitive optical sensor for the detection of a trace amount of water in acetonitrile.

SELECTION OF CITATIONS
SEARCH DETAIL