Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Plant J ; 118(5): 1603-1618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441834

ABSTRACT

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytosol , Dipeptidases , Glutathione , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/enzymology , Glutathione/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Dipeptidases/metabolism , Dipeptidases/genetics , Cytosol/metabolism , Dipeptides/metabolism , Sulfur/metabolism
2.
Plant Cell Physiol ; 65(5): 748-761, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38372612

ABSTRACT

Bacillus pumilus TUAT1 acts as plant growth-promoting rhizobacteria for various plants like rice and Arabidopsis. Under stress conditions, B. pumilus TUAT1 forms spores with a thick peptidoglycan (PGN) cell wall. Previous research showed that spores were significantly more effective than vegetative cells in enhancing plant growth. In Arabidopsis, lysin motif proteins, LYM1, LYM3 and CERK1, are required for recognizing bacterial PGNs to mediate immunity. Here, we examined the involvement of PGN receptor proteins in the plant growth promotion (PGP) effects of B. pumilus TUAT1 using Arabidopsis mutants defective in PGN receptors. Root growth of wild-type (WT), cerk1-1, lym1-1 and lym1-2 mutant plants was significantly increased by TUAT1 inoculation, but this was not the case for lym3-1 and lym3-2 mutant plants. RNA-seq analysis revealed that the expression of a number of defense-related genes was upregulated in lym3 mutant plants. These results suggested that B. pumilus TUAT1 may act to reduce the defense response, which is dependent on a functional LYM3. The expression of the defense-responsive gene, WRKY29, was significantly induced by the elicitor flg-22, in both WT and lym3 mutant plants, while this induction was significantly reduced by treatment with B. pumilus TUAT1 and PGNs in WT, but not in lym3 mutant plants. These findings suggest that the PGNs of B. pumilus TUAT1 may be recognized by the LYM3 receptor protein, suppressing the defense response, which results in plant growth promotion in a trade-off between defense and growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bacillus pumilus , Gene Expression Regulation, Plant , Peptidoglycan , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/growth & development , Peptidoglycan/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Bacillus pumilus/physiology , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Mutation , Plant Immunity
3.
Microorganisms ; 11(5)2023 May 03.
Article in English | MEDLINE | ID: mdl-37317167

ABSTRACT

This study aimed to determine the effect of sulfur (S) application on a root-associated microbial community resulting in a rhizosphere microbiome with better nutrient mobilizing capacity. Soybean plants were cultivated with or without S application, the organic acids secreted from the roots were compared. High-throughput sequencing of 16S rRNA was used to analyze the effect of S on microbial community structure of the soybean rhizosphere. Several plant growth-promoting bacteria (PGPB) isolated from the rhizosphere were identified that can be harnessed for crop productivity. The amount of malic acid secreted from the soybean roots was significantly induced by S application. According to the microbiota analysis, the relative abundance of Polaromonas, identified to have positive association with malic acid, and arylsulfatase-producing Pseudomonas, were increased in S-applied soil. Burkholderia sp. JSA5, obtained from S-applied soil, showed multiple nutrient-mobilizing traits among the isolates. In this study, S application affected the soybean rhizosphere bacterial community structure, suggesting the contribution of changing plant conditions such as in the increase in organic acid secretion. Not only the shift of the microbiota but also isolated strains from S-fertilized soil showed PGPB activity, as well as isolated bacteria that have the potential to be harnessed for crop productivity.

4.
Microorganisms ; 11(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36838197

ABSTRACT

Biofertilizers are agricultural materials capable of reducing the usage amounts of chemical fertilizers. Spore-forming microorganisms (SFM) could be used for plant growth promotion or to improve plant health. Until now, biofertilizers based on SFM have been applied for rice and other crops. In this study, we isolated and characterized SFM, which were colonized on the Oryza sativa L. roots. SFM were analyzed regarding the short-term effects of biofertilization on the nursery growths. Analysis was performed without nitrogen or any inorganic fertilizer and was divided into two groups, including bacteria and fungi. SF-bacteria were dominated by the Firmicutes group, including species from Viridibacillus, Lysinibacillus, Solibacillus, Paenibacillus, Priestia, and mainly Bacillus (50%). The fungi group was classified as Mucoromycota, Basidiomycota, and mainly Ascomycota (80%), with a predominance of Penicillium and Trichoderma species. In plant performance in comparison with B. pumilus TUAT1, some bacteria and fungus isolates significantly improved the early growth of rice, based on 48 h inoculum with 107 CFU mL-1. Furthermore, several SFM showed positive physiological responses under abiotic stress or with limited nutrients such as phosphorous (P). Moreover, the metabolic fingerprint was obtained. The biofertilizer based on SFM could significantly reduce the application of the inorganic fertilizer and improve the lodging resistances of rice, interactively enhancing better plant health and crop production.

5.
J Exp Bot ; 74(11): 3313-3327, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36651789

ABSTRACT

Glutathione (GSH) is a ubiquitous, abundant, and indispensable thiol for plants that participates in various biological processes, such as scavenging reactive oxygen species, redox signaling, storage and transport of sulfur, detoxification of harmful substances, and metabolism of several compounds. Therefore knowledge of GSH metabolism is essential for plant science. Nevertheless, GSH degradation has been insufficiently elucidated, and this has hampered our understanding of plant life. Over the last five decades, the γ-glutamyl cycle has been dominant in GSH studies, and the exoenzyme γ-glutamyl transpeptidase has been regarded as the major GSH degradation enzyme. However, recent studies have shown that GSH is degraded in cells by cytosolic enzymes such as γ-glutamyl cyclotransferase or γ-glutamyl peptidase. Meanwhile, a portion of GSH is degraded after conjugation with other molecules, which has also been found to be carried out by vacuolar γ-glutamyl transpeptidase, γ-glutamyl peptidase, or phytochelatin synthase. These findings highlight the need to re-assess previous assumptions concerning the γ-glutamyl cycle, and a novel overview of the plant GSH degradation pathway is essential. This review aims to build a foundation for future studies by summarizing current understanding of GSH/glutathione conjugate degradation.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , gamma-Glutamyltransferase/metabolism , Peptide Hydrolases/metabolism , Glutathione/metabolism
6.
Microorganisms ; 10(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422352

ABSTRACT

Genetic and physiological characterization of bacteria derived from nodules of leguminous plants in the exploration of biofertilizer is of paramount importance from agricultural and environmental perspectives. Phylogenetic analysis of the 16S rRNA gene of 84 isolates derived from Bangladeshi soils revealed an unpredictably diverse array of nodule-forming and endosymbiotic bacteria-mostly belonging to the genus Bradyrhizobium. A sequence analysis of the symbiotic genes (nifH and nodD1) revealed similarities with the 16S rRNA gene tree, with few discrepancies. A phylogenetic analysis of the partial rrn operon (16S-ITS-23S) and multi-locus sequence analysis of atpD, glnII, and gyrB identified that the Bradyrhizobium isolates belonged to Bradyrhizobium diazoefficiens, Bradyrhizobium elkanii, Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense species. In the pot experiment, several isolates showed better activity than B. diazoefficiens USDA110, and the Bho-P2-B2-S1-51 isolate of B. liaoningense showed significantly higher acetylene reduction activity in both Glycine max cv. Enrei and Binasoybean-3 varieties and biomass production increased by 9% in the Binasoybean-3 variety. Tha-P2-B1-S1-68 isolate of B. diazoefficiens significantly enhanced shoot length and induced 10% biomass production in Binasoybean-3. These isolates grew at 1-4% NaCl concentration and pH 4.5-10 and survived at 45 °C, making the isolates potential candidates for eco-friendly soybean biofertilizers in salty and tropical regions.

7.
Plant J ; 111(6): 1626-1642, 2022 09.
Article in English | MEDLINE | ID: mdl-35932489

ABSTRACT

Glutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by γ-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that γ-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay. Recombinant proteins of GGP1, as well as GGP3, showed high degradation activity of GSH, but not of oxidized glutathione (GSSG), in vitro. Notably, the GGP1 transcripts were highly abundant in rosette leaves, in agreement with the ggp1 mutants constantly accumulating more GSH regardless of nutritional conditions. Given the lower energy requirements of the GGP- than the GGCT-mediated pathway, the GGP-mediated pathway could be a more efficient route for GSH degradation than the GGCT-mediated pathway. Therefore, we propose a model wherein cytosolic GSH is degraded chiefly by GGP1 and likely also by GGP3. Another noteworthy fact is that GGPs are known to process GSH conjugates in glucosinolate and camalexin synthesis; indeed, we confirmed that the ggp1 mutant contained higher levels of O-acetyl-l-Ser, a signaling molecule for sulfur starvation, and lower levels of glucosinolates and their degradation products. The predicted structure of GGP1 further provided a rationale for this hypothesis. In conclusion, we suggest that GGP1 and possibly GGP3 play vital roles in both primary and secondary sulfur metabolism.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Glucosinolates/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Peptide Hydrolases/metabolism , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sulfur/metabolism
8.
Microbes Environ ; 37(2)2022.
Article in English | MEDLINE | ID: mdl-35598988

ABSTRACT

Phosphorus (P) is abundant in soil and is essential for plant growth and development; however, it is easily rendered insoluble in complexes of different types of phosphates, which may lead to P deficiency. Therefore, increases in the amount of P released from phosphate minerals using microbial inoculants is an important aspect of agriculture. The present study used inorganic phosphate solubilizing bacteria (iPSB) in paddy field soils to develop microbial inoculants. Soils planted with rice were collected from different regions of Japan. Soil P was sequentially fractionated using the Hedley method. iPSB were isolated using selective media supplemented with tricalcium phosphate (Ca-P), aluminum phosphate (Al-P), or iron phosphate (Fe-P). Representative isolates were selected based on the P solubilization index and soil sampling site. Identification was performed using 16S rRNA and rpoB gene sequencing. Effectiveness was screened based on rice cultivar Koshihikari growth supplemented with Ca-P, Al-P, or Fe-P as the sole P source. Despite the relatively homogenous soil pH of paddy field sources, three sets of iPSB were isolated, suggesting the influence of fertilizer management and soil types. Most isolates were categorized as ß-Proteobacteria (43%). To the best of our knowledge, this is the first study to describe the genera Pleomorphomonas, Rhodanobacter, and Trinickia as iPSB. Acidovorax sp. JC5, Pseudomonas sp. JC11, Burkholderia sp. JA6 and JA10, Sphingomonas sp. JA11, Mycolicibacterium sp. JF5, and Variovorax sp. JF6 promoted plant growth in rice supplemented with an insoluble P source. The iPSBs obtained may be developed as microbial inoculants for various soil types with different P fixation capacities.


Subject(s)
Agricultural Inoculants , Burkholderia , Oryza , Agricultural Inoculants/genetics , Burkholderia/genetics , Japan , Phosphates , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
9.
Microbes Environ ; 37(1)2022.
Article in English | MEDLINE | ID: mdl-35082177

ABSTRACT

Spores are a stress-resistant form of Bacillus spp., which include species that are plant growth-promoting rhizobacteria (PGPR). Previous studies showed that the inoculation of plants with vegetative cells or spores exerted different plant growth-promoting effects. To elucidate the spore-specific mechanism, we compared the effects of viable vegetative cells, autoclaved dead spores, and viable spores of Bacillus pumilus TUAT1 inoculated at 107 CFU plant-1 on the growth of the C4 model plant, Setaria viridis A10.1. B. pumilus TUAT1 spores exerted stronger growth-promoting effects on Setaria than on control plants 14 days after the inoculation. Viable spores increased shoot weight, root weight, shoot length, root length, and nitrogen uptake efficiency 21 days after the inoculation. These increases involved primary and crown root formation. Additionally, autoclaved dead spores inoculated at 108 or 109 CFU plant-1 had a positive impact on crown root differentiation, which increased total lateral root length, resulting in a greater biomass and more efficient nitrogen uptake. The present results indicate that an inoculation with viable spores of B. pumilus TUAT1 is more effective at enhancing the growth of Setaria than that with vegetative cells. The plant response to dead spores suggests that the spore-specific plant growth-promoting mechanism is at least partly independent of symbiotic colonization.


Subject(s)
Bacillus pumilus , Bacillus , Setaria Plant , Plant Development , Plant Roots/microbiology , Spores, Bacterial
10.
Plant Mol Biol ; 109(4-5): 563-577, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34837578

ABSTRACT

KEY MESSAGE: An organomercurial phenylmercury activates AtPCS1, an enzyme known for detoxification of inorganic metal(loid) ions in Arabidopsis and the induced metal-chelating peptides phytochelatins are essential for detoxification of phenylmercury. Small thiol-rich peptides phytochelatins (PCs) and their synthases (PCSs) are crucial for plants to mitigate the stress derived from various metal(loid) ions in their inorganic form including inorganic mercury [Hg(II)]. However, the possible roles of the PC/PCS system in organic mercury detoxification in plants remain elusive. We found that an organomercury phenylmercury (PheHg) induced PC synthesis in Arabidopsis thaliana plants as Hg(II), whereas methylmercury did not. The analyses of AtPCS1 mutant plants and in vitro assays using the AtPCS1-recombinant protein demonstrated that AtPCS1, the major PCS in A. thaliana, was responsible for the PheHg-responsive PC synthesis. AtPCS1 mutants cad1-3 and cad1-6, and the double mutant of PC-metal(loid) complex transporters AtABCC1 and AtABCC2 showed enhanced sensitivity to PheHg as well as to Hg(II). The hypersensitivity of cad1-3 to PheHg stress was complemented by the own-promoter-driven expression of AtPCS1-GFP. The confocal microscopy of the complementation lines showed that the AtPCS1-GFP was preferentially expressed in epidermal cells of the mature and elongation zones, and the outer-most layer of the lateral root cap cells in the meristematic zone. Moreover, in vitro PC-metal binding assay demonstrated that binding affinity between PC and PheHg was comparable to Hg(II). However, plant ionomic profiles, as well as root morphology under PheHg and Hg(II) stress, were divergent. These results suggest that PheHg phytotoxicity is different from Hg(II), but AtPCS1-mediated PC synthesis, complex formation, and vacuolar sequestration by AtABCC1 and AtABCC2 are similarly functional for both PheHg and Hg(II) detoxification in root surficial cell types.


Subject(s)
Aminoacyltransferases , Arabidopsis Proteins , Arabidopsis , Mercury , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cadmium/metabolism , Glutathione/metabolism , Ions/metabolism , Mercury/metabolism , Mercury/toxicity , Phytochelatins/metabolism
11.
Front Microbiol ; 12: 701796, 2021.
Article in English | MEDLINE | ID: mdl-34646244

ABSTRACT

L-Canavanine, a conditionally essential non-proteinogenic amino acid analog to L-arginine, plays important roles in cell division, wound healing, immune function, the release of hormones, and a precursor for the synthesis of nitric oxide (NO). In this report, we found that the L-canavanine is released into the soil from the roots of hairy vetch (Vicia villosa) and declines several weeks after growth, while it was absent in bulk proxy. Hairy vetch root was able to exudate L-canavanine in both pots and in vitro conditions in an agar-based medium. The content of the L-canavanine in pots and agar conditions was higher than the field condition. It was also observed that the addition of L-canavanine significantly altered the microbial community composition and diversity in soil. Firmicutes and Actinobacteria became more abundant in the soil after the application of L-canavanine. In contrast, Proteobacteria and Acidobacteria populations were decreased by higher L-canavanine concentration (500 nmol/g soil). Prediction of the soil metabolic pathways using PICRUSt2 estimated that the L-arginine degradation pathway was enriched 1.3-fold when L-canavanine was added to the soil. Results indicated that carbon metabolism-related pathways were altered and the degradation of nitrogen-rich compounds (i.e., amino acids) enriched. The findings of this research showed that secretion of the allelochemical L-canavanine from the root of hairy vetch may alter the soil microbial community and soil metabolite pathways to increase the survival chance of hairy vetch seedlings. This is the first report that L-canavanine acts as an allelochemical that affects the biodiversity of soil microbial community.

12.
Microbes Environ ; 36(2)2021.
Article in English | MEDLINE | ID: mdl-34092740

ABSTRACT

Phaseolus vulgaris is a grain cultivated in vast areas of different countries. It is an excellent alternative to the other legumes in the Venezuelan diet and is of great agronomic interest due to its resistance to soil acidity, drought, and high temperatures. Phaseolus establishes symbiosis primarily with Rhizobium and Ensifer species in most countries, and this rhizobia-legume interaction has been studied in Asia, Africa, and the Americas. However, there is currently no evidence to show that rhizobia nodulate the endemic cultivars of P. vulgaris in Venezuela. Therefore, we herein investigated the phylogenetic diversity of plant growth-promoting and N2-fixing nodulating bacteria isolated from the root nodules of P. vulgaris cultivars in a different agroecosystem in Venezuela. In comparisons with other countries, higher diversity was found in isolates from P. vulgaris nodules, ranging from α- and ß-proteobacteria. Some isolates belonging to several new phylogenetic lineages within Bradyrhizobium, Ensifer, and Mesorhizobium species were also specifically isolated at some topographical regions. Additionally, some isolates exhibited tolerance to high temperature, acidity, alkaline pH, salinity stress, and high Al levels; some of these characteristics may be related to the origin of the isolates. Some isolates showed high tolerance to Al toxicity as well as strong plant growth-promoting and antifungal activities, thereby providing a promising agricultural resource for inoculating crops.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Genetic Variation , Phaseolus/microbiology , Root Nodules, Plant/microbiology , Symbiosis , Bacteria/classification , Bacterial Physiological Phenomena , DNA, Bacterial/genetics , Nitrogen Fixation , Phaseolus/growth & development , Phylogeny , Plant Root Nodulation , Soil Microbiology , Venezuela
13.
J Environ Radioact ; 237: 106682, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34148005

ABSTRACT

The supply of K, being the chemical analog of Cs, affects the phytotransfer of radiocesium such as 137Cs from contaminated soils and its accumulation in plant tissues. Since K and Cs have high affinity to the same clay particle surfaces, the presence of potassium-solubilizing bacteria (KSB) could increase the availability of not only K+ in the rhizosphere but also of radiocesium. In this study, we obtained five KSB isolates with the highest solubilization capacities from soybean rhizosphere on modified Aleksandrov medium containing sericite as K source. Based on biochemical and 16S rRNA gene sequence analysis, we identified the bacteria as Bacillus aryabhattai MG774424, Pseudomonas umsongensis MG774425, P. frederiksbergensis MG774426, Burkholderia sabiae MG774427, and P. mandelii MG774428. We evaluated the KSB isolates based on plant growth promotion and 137Cs accumulation in komatsuna (Brassica rapa L. var. Perviridis) grown in three soils collected from Miyanoiri, Takanishi, and Ota contaminated by 137Cs from the Fukushima accident. Inoculation with KSB showed beneficial effects on plant growth and increased the overall plant biomass production (~40%). On the average, KSB inoculation resulted in the removal of 0.07 ± 0.04% of 137Cs from the soil, more than twice the control. But similar to the effect of KSB inoculation on komatsuna biomass production, different KSBs performed variably and exhibited site-specific responses independent of their K-solubilizing capacities, with higher 137Cs phyto-transfer in roots than in shoots. In terms of root transfer factor (TF), values were highest in komatsuna plants grown in Miyanoiri and Ota soils inoculated with P. frederiksbergensis and Burkholderia sabiae, while they were highest in Takanishi soils inoculated with Bacillus aryabhattai and P. umsongensis. These TF values were also much higher than previously reported values for komatsuna grown in 137Cs-contaminated Fukushima soils inoculated with other rhizobacteria. Thus, KSB inoculation significantly enhance not only the growth of komatsuna but 137Cs uptake.


Subject(s)
Brassica rapa , Radiation Monitoring , Soil Pollutants, Radioactive , Bacillus , Bacteria/genetics , Biodegradation, Environmental , Burkholderiaceae , Cesium Radioisotopes/analysis , Potassium , Pseudomonas , RNA, Ribosomal, 16S , Soil , Soil Pollutants, Radioactive/analysis
14.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34035165

ABSTRACT

Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such "end" products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.


Subject(s)
Adaptation, Physiological , Arabidopsis/metabolism , Cysteine/metabolism , Gene Expression Regulation, Plant , Glucosinolates/metabolism , Sulfur/metabolism , Arabidopsis Proteins/metabolism , Cell Cycle Proteins/metabolism , Cellulases/metabolism
15.
Plant Sci ; 305: 110822, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33691958

ABSTRACT

Glutathione (GSH) is a tripeptide involved in controlling heavy metal movement in plants. Our previous study showed that GSH, when site-specifically applied to plant roots, inhibits Cd translocation from the roots to shoots in hydroponically cultured oilseed rape (Brassica napus) plants. A factor that led to this inhibitory effect was the activation of Cd efflux from root cells. To further investigate the molecular mechanism triggered by root-applied GSH, Cd movement was non-invasively monitored using a positron-emitting tracer imaging system. The Cd absorption and efflux process in the roots were visualized successfully. The effects of GSH on Cd efflux from root cells were estimated by analyzing imaging data. Reanalysis of image data suggested that GSH applied to roots, at the shoot base, activated Cd return. Cutting the shoot base significantly inhibited Cd efflux from root cells. These experimental results demonstrate that the shoot base plays an important role in distributing Cd throughout the plant body. Furthermore, microarray analysis revealed that about 400 genes in the roots responded to root-applied GSH. Among these, there were genes for transporter proteins related to heavy metal movement in plants and proteins involved in the structure modification of cell walls.


Subject(s)
Biological Transport/physiology , Brassica napus/metabolism , Cadmium/metabolism , Glutathione/metabolism , Metals, Heavy/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Crops, Agricultural/metabolism
16.
Front Plant Sci ; 12: 707080, 2021.
Article in English | MEDLINE | ID: mdl-35095938

ABSTRACT

Commercial inoculants are often used to inoculate field-grown soybean in Europe. However, nodulation efficiencies in these areas are often low. To enhance biological nitrogen (N) fixation and increase domestic legume production, indigenous strains that are adapted to local conditions could be used to develop more effective inoculants. The objective of this study was to assess the ability of locally isolated Bradyrhizobium strains to enhance soybean productivity in different growing conditions of Northeast Germany. Three indigenous Bradyrhizobium isolates (GMF14, GMM36, and GEM96) were tested in combination with different soybean cultivars of different maturity groups and quality characteristics in one field trial and two greenhouse studies. The results showed a highly significant strain × cultivar interactions on nodulation response. Independent of the Bradyrhizobium strain, inoculated plants in the greenhouse showed higher nodulation, which corresponded with an increased N uptake than that in field conditions. There were significantly higher nodule numbers and nodule dry weights following GMF14 and GMM36 inoculation in well-watered soil, but only minor differences under drought conditions. Inoculation of the soybean cultivar Merlin with the strain GEM96 enhanced nodulation but did not correspond to an increased grain yield under field conditions. USDA110 was consistent in improving the grain yield of soybean cultivars Sultana and Siroca. On the other hand, GMM36 inoculation to Sultana and GEM96 inoculation to Siroca resulted in similar yields. Our results demonstrate that inoculation of locally adapted soybean cultivars with the indigenous isolates improves nodulation and yield attributes. Thus, to attain optimal symbiotic performance, the strains need to be matched with specific cultivars.

18.
Plants (Basel) ; 9(2)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013219

ABSTRACT

Sulfur (S) assimilation, which is initiated by sulfate uptake, generates cysteine, the substrate for glutathione (GSH) and phytochelatin (PC) synthesis. GSH and PC contribute to cadmium (Cd) detoxification by capturing it for sequestration. Although Cd exposure is known to induce the expression of S-assimilating enzyme genes, including sulfate transporters (SULTRs), mechanisms of their transcriptional regulation are not well understood. Transcription factor SLIM1 controls transcriptional changes during S deficiency (-S) in Arabidopsis thaliana. We examined the potential involvement of SLIM1 in inducing the S assimilation pathway and PC accumulation. Cd treatment reduced the shoot fresh weight in the sulfur limitation1 (slim1) mutant but not in the parental line (1;2PGN). Cd-induced increases of sulfate uptake and SULTR1;2 expressions were diminished in the slim1 mutant, suggesting that SLIM1 is involved in inducing sulfate uptake during Cd exposure. The GSH and PC levels were lower in slim1 than in the parental line, indicating that SLIM1 was required for increasing PC during Cd treatment. Hence, SLIM1 indirectly contributes to Cd tolerance of plants by inducing -S responses in the cell caused by depleting the GSH pool, which is consumed by enhanced PC synthesis and sequestration to the vacuole.

19.
Microbes Environ ; 35(1)2020.
Article in English | MEDLINE | ID: mdl-31996499

ABSTRACT

In central Europe, soybean cultivation is gaining increasing importance to reduce protein imports from overseas and make cropping systems more sustainable. In the field, despite the inoculation of soybean with commercial rhizobia, its nodulation is low. In many parts of Europe, limited information is currently available on the genetic diversity of rhizobia and, thus, biological resources for selecting high nitrogen-fixing rhizobia are inadequate. These resources are urgently needed to improve soybean production in central Europe. The objective of the present study was to identify strains that have the potential to increase nitrogen fixation by and the yield of soybean in German soils. We isolated and characterized 77 soybean rhizobia from 18 different sampling sites. Based on a multilocus sequence analysis (MLSA), 71% of isolates were identified as Bradyrhizobium and 29% as Rhizobium. A comparative analysis of the nodD and nifH genes showed no significant differences, which indicated that the soybean rhizobia symbiotic genes in the present study belong to only one type. One isolate, GMF14 which was tolerant of a low temperature (4°C), exhibited higher nitrogen fixation in root nodules and a greater plant biomass than USDA 110 under cold conditions. These results strongly suggest that some indigenous rhizobia enhance biological nitrogen fixation and soybean yield due to their adaption to local conditions.


Subject(s)
Bradyrhizobium/physiology , Glycine max/growth & development , Glycine max/microbiology , Rhizobium/physiology , Soil Microbiology , Agriculture , Bacterial Proteins/genetics , Bradyrhizobium/classification , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Cold Temperature , Germany , Multilocus Sequence Typing , Nitrogen Fixation/genetics , Oxidoreductases/genetics , Phylogeny , Rhizobium/classification , Rhizobium/genetics , Rhizobium/metabolism , Root Nodules, Plant/microbiology , Stress, Physiological , Symbiosis/genetics
20.
Microbes Environ ; 35(1)2020.
Article in English | MEDLINE | ID: mdl-31932537

ABSTRACT

Vigna is a genus of legumes cultivated in specific areas of tropical countries. Species in this genus are important crops worldwide. Vigna species are of great agronomic interest in Venezuela because Vigna beans are an excellent alternative to other legumes. However, this type of crop has some cultivation issues due to sensitivity to acidic soils, high temperatures, and salinity stress, which are common in Venezuela. Vigna species establish symbioses mainly with Bradyrhizobium and Ensifer, and Vigna-rhizobia interactions have been examined in Asia, Africa, and America. However, the identities of the rhizobia associated with V. radiata and V. unguiculata in Venezuela remain unknown. In the present study, we isolated Venezuelan symbiotic rhizobia associated with Vigna species from soils with contrasting agroecosystems or from fields in Venezuela. Several types of soils were used for bacterial isolation and nodules were sampled from environments characterized by abiotic stressors, such as high temperatures, high concentrations of NaCl, and acidic or alkaline pH. Venezuelan Vigna-rhizobia were mainly fast-growing. Sequencing of several housekeeping genes showed that in contrast to other continents, Venezuelan Vigna species were nodulated by rhizobia genus including Burkholderia, containing bacteria from several new phylogenetic lineages within the genus Bradyrhizobium. Some Rhizobium and Bradyrhizobium isolates were tolerant of high salinity and Al toxicity. The stress tolerance of strains was dependent on the type of rhizobia, soil origin, and cultivation history. An isolate classified as R. phaseoli showed the highest plant biomass, nitrogen fixation, and excellent abiotic stress response, suggesting a novel promising inoculant for Vigna cultivation in Venezuela.


Subject(s)
Phylogeny , Proteobacteria/classification , Proteobacteria/physiology , Soil Microbiology , Symbiosis , Vigna/microbiology , DNA, Bacterial/genetics , Genes, Bacterial/genetics , Nitrogen Fixation/genetics , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , Soil/chemistry , Stress, Physiological , Venezuela , Vigna/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...