Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
JBMR Plus ; 8(4): ziae018, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38544920

ABSTRACT

Achondroplasia (ACH) is a skeletal dysplasia characterized by short-limbed short stature caused by the gain-of-function mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Activated FGFR3, which is a negative regulator of bone elongation, impairs the growth of long bones and the spinal arch by inhibiting chondrocyte proliferation and differentiation. Most patients with ACH have spinal canal stenosis in addition to short stature. Meclozine has been found to inhibit FGFR3 via drug repurposing. A 10-d treatment with meclozine promoted long-bone growth in a mouse model of ACH (Fgfr3ach mice). This study aimed to evaluate the effects of long-term meclozine administration on promoting bone growth and the spinal canal in Fgfr3ach mice. Meclozine (2 mg/kg/d) was orally administered to Fgfr3ach mice for 5 d per wk from the age of 7 d to 56 d. Meclozine (2 mg/kg/d) significantly reduced the rate of death or paralysis and improved the length of the body, cranium, and long bones in male and female Fgfr3ach mice. Micro-computed tomography analysis revealed that meclozine ameliorated kyphotic deformities and trabecular parameters, including BMD, bone volume/tissue volume, trabecular thickness, and trabecular number at distal femur of Fgfr3ach mice in both sexes. Histological analyses revealed that the hypertrophic zone in the growth plate was restored in Fgfr3ach mice following meclozine treatment, suggesting upregulation of endochondral ossification. Skeletal preparations demonstrated that meclozine restored the spinal canal diameter in Fgfr3ach mice in addition to improving the length of each bone. The 2 mg/kg/d dose of meclozine reduced the rate of spinal paralysis caused by spinal canal stenosis, maintained the growth plate structure, and recovered the bone quality and growth of axial and appendicular skeletons of Fgfr3ach mice in both sexes. Long-term meclozine administration has the potential to ameliorate spinal paralysis and bone growth in patients with ACH.

2.
Neurotherapeutics ; 21(2): e00318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233267

ABSTRACT

Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 â€‹kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.


Subject(s)
Myasthenic Syndromes, Congenital , Animals , Mice , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Calcitriol/metabolism , Neuromuscular Junction/metabolism , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Motor Neurons/metabolism
3.
J Neurochem ; 168(4): 342-354, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37994470

ABSTRACT

Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre- and post-synaptic regions. However, the gene expression profiles that promote the NMJ formation during embryogenesis remain largely unexplored. We performed single-nucleus RNA sequencing (snRNA-seq) analysis of embryonic and neonatal mouse diaphragms, and found that each myonucleus had a distinct transcriptome pattern during the NMJ formation. Among the previously reported NMJ-constituting genes, Dok7, Chrna1, and Chrnd are specifically expressed in subsynaptic myonuclei at E18.5. In the E18.5 diaphragm, ca. 10.7% of the myonuclei express genes for the NMJ formation (Dok7, Chrna1, and Chrnd) together with four representative ß-catenin regulators (Amotl2, Ptprk, Fam53b, and Tcf7l2). Additionally, the temporal gene expression patterns of these seven genes are synchronized in differentiating C2C12 myoblasts. Amotl2 and Ptprk are expressed in the sarcoplasm, where ß-catenin serves as a structural protein to organize the membrane-anchored NMJ structure. In contrast, Fam53b and Tcf7l2 are expressed in the myonucleus, where ß-catenin serves as a transcriptional coactivator in Wnt/ß-catenin signaling at the NMJ. In C2C12 myotubes, knockdown of Amotl2 or Ptprk markedly, and that of Fam53b and Tcf7l2 less efficiently, impair the clustering of acetylcholine receptors. In contrast, knockdown of Fam53b and Tcf7l2, but not of Amotl2 or Ptprk, impairs the gene expression of Slit2 encoding an axonal attractant for motor neurons, which is required for the maturation of motor nerve terminal. Thus, Amotl2 and Ptprk exert different roles at the NM compared to Fam53b and Tcf7l2. Additionally, Wnt ligands originating from the spinal motor neurons and the perichondrium/chondrocyte are likely to work remotely on the subsynaptic nuclei and the myotendinous junctional nuclei, respectively. We conclude that snRNA-seq analysis of embryonic/neonatal diaphragms reveal a novel coordinated expression profile especially in the Wnt/ß-catenin signaling that regulate the formation of the embryonic NMJ.


Subject(s)
Transcriptome , beta Catenin , Mice , Animals , beta Catenin/metabolism , Neuromuscular Junction/genetics , Neuromuscular Junction/metabolism , Wnt Signaling Pathway/genetics , RNA, Small Nuclear/metabolism , Embryonic Development , Muscle, Skeletal/metabolism , Receptors, Cholinergic/metabolism
4.
iScience ; 26(10): 107746, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37744035

ABSTRACT

Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.

5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108583

ABSTRACT

Agrin is a heparan sulfate proteoglycan essential for the clustering of acetylcholine receptors at the neuromuscular junction. Neuron-specific isoforms of agrin are generated by alternative inclusion of three exons, called Y, Z8, and Z11 exons, although their processing mechanisms remain elusive. We found, by inspection of splicing cis-elements into the human AGRN gene, that binding sites for polypyrimidine tract binding protein 1 (PTBP1) were extensively enriched around Y and Z exons. PTBP1-silencing enhanced the coordinated inclusion of Y and Z exons in human SH-SY5Y neuronal cells, even though three constitutive exons are flanked by these alternative exons. Deletion analysis using minigenes identified five PTBP1-binding sites with remarkable splicing repression activities around Y and Z exons. Furthermore, artificial tethering experiments indicated that binding of a single PTBP1 molecule to any of these sites represses nearby Y or Z exons as well as the other distal exons. The RRM4 domain of PTBP1, which is required for looping out a target RNA segment, was likely to play a crucial role in the repression. Neuronal differentiation downregulates PTBP1 expression and promotes the coordinated inclusion of Y and Z exons. We propose that the reduction in the PTPB1-RNA network spanning these alternative exons is essential for the generation of the neuron-specific agrin isoforms.


Subject(s)
Neuroblastoma , RNA , Humans , RNA/metabolism , Agrin/genetics , Agrin/metabolism , Neurons/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Alternative Splicing , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism
6.
BMC Musculoskelet Disord ; 24(1): 200, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927417

ABSTRACT

BACKGROUND: Postmenopausal osteoporosis is a widespread health concern due to its prevalence among older adults and an associated high risk of fracture. The downregulation of bone regeneration delays fracture healing. Activated fibroblast growth factor receptor 3 (FGFR3) accelerates bone regeneration at juvenile age and downregulates bone mineralization at all ages. However, the impact of FGFR3 signaling on bone regeneration and bone mineralization post-menopause is still unknown. This study aimed to evaluate the impact of FGFR3 signaling on bone regeneration and bone mineralization during menopause by developing a distraction osteogenesis (DO) mouse model after ovariectomy (OVX) using transgenic mice with activated FGFR3 driven by Col2a1 promoter (Fgfr3 mice). METHODS: The OVX or sham operations were performed in 8-week-old female Fgfr3 and wild-type mice. After 8 weeks of OVX surgery, DO surgery in the lower limb was performed. The 5-day-latency period followed by performing distraction for 9 days. Bone mineral density (BMD) and bone regeneration was assessed by micro-computed tomography (micro-CT) scan and soft X-ray. Bone volume in the distraction area was also evaluated by histological analysis after 7 days at the end of distraction. Osteogenic differentiation and mineralization of bone marrow-derived mesenchymal stem cells (BMSCs) derived from each mouse after 8 weeks of the OVX or sham operations were also evaluated with and without an inhibitor for FGFR3 signaling (meclozine). RESULTS: BMD decreased after OVX in both groups, and it further deteriorated in Fgfr3 mice. Poor callus formation after DO was also observed in both groups with OVX, and the amount of regenerated bone was further decreased in Fgfr3 mice. Similarly, histological analysis revealed that Fgfr3 OVX mice showed lower bone volume. Osteogenic differentiation and mineralization of BMSCs were also deteriorated in Fgfr3 OVX mice. An inhibitor for FGFR3 signaling dramatically reversed the inhibitory effect of OVX and FGFR3 signaling on BMSC mineralization. CONCLUSION: Upregulated FGFR3 decreased newly regenerated bone after DO and BMD in OVX mice. FGFR3 signaling can be a potential therapeutic target in patients with postmenopausal osteoporosis.


Subject(s)
Osteogenesis , Osteoporosis, Postmenopausal , Animals , Female , Humans , Mice , Bone Density , Bone Regeneration , Calcification, Physiologic , Disease Models, Animal , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/pathology , Ovariectomy , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/pharmacology , X-Ray Microtomography
7.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835142

ABSTRACT

Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.


Subject(s)
Myasthenic Syndromes, Congenital , Symporters , Humans , Albuterol , Amifampridine , Cholinesterase Inhibitors , Mitochondrial Proteins/genetics , Mutation , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/pathology , NAV1.4 Voltage-Gated Sodium Channel/genetics , Neuromuscular Junction/pathology , Receptors, Cholinergic/genetics , Symporters/genetics , Synaptic Transmission
8.
Exp Ther Med ; 25(1): 39, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36569439

ABSTRACT

X-linked hypophosphatemic rickets (XLH) is characterized by hypo-mineralization of the bone due to hypophosphatemia. XLH is caused by abnormally high levels of fibroblast growth factor 23, which trigger renal phosphate wasting. Activated fibroblast growth factor receptor 3 (FGFR3) signaling is considered to be involved in XLH pathology. Our previous study revealed that meclozine attenuated FGFR3 signaling and promoted longitudinal bone growth in an achondroplasia mouse model. The present study aimed to examine whether meclozine affected the bone phenotype in a mouse model of XLH [X-linked hypophosphatemic (Hyp) mice]. Meclozine was administered orally to 7-day-old Hyp mice for 10 days, after which the mice were subjected to blood sampling and histological analyses of the first coccygeal vertebra, femur and tibia. Villanueva Goldner staining was used to assess bone mineralization, hematoxylin and eosin staining was used to determine the growth plate structure and tartrate-resistant acid phosphatase staining was used to measure osteoclast activity. The osteoid volume/bone volume of cortical bone was lower in meclozine-treated Hyp mice compared with untreated Hyp mice. Meclozine treatment improved the abnormally thick hypertrophic zone of the growth plate and ameliorated the downregulation of osteoclast surface/bone surface in Hyp mice. However, meclozine had only a marginal effect on mineralization in the trabecular bone and on calcium and phosphate plasma levels. A 10-day-tratment with meclozine partially ameliorated bone mineralization in Hyp mice; hence, meclozine could alleviate XLH symptoms.

9.
Hum Mol Genet ; 32(9): 1511-1523, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36579833

ABSTRACT

At the neuromuscular junction, the downstream of tyrosine kinase 7 (DOK7) enhances the phosphorylation of muscle-specific kinase (MuSK) and induces clustering of acetylcholine receptors (AChRs). We identified a patient with congenital myasthenic syndrome (CMS) with two heteroallelic mutations in DOK7, c.653-1G>C in intron 5 and c.190G>A predicting p.G64R in the pleckstrin homology domain. iPS cells established from the patient (CMS-iPSCs) showed that c.653-1G>C caused in-frame skipping of exon 6 (120 bp) and frame-shifting activation of a cryptic splice site deleting seven nucleotides in exon 6. p.G64R reduced the expression of DOK7 to 10% of wild-type DOK7, and markedly compromised AChR clustering in transfected C2C12 myotubes. p.G64R-DOK7 made insoluble aggresomes at the juxtanuclear region in transfected C2C12 myoblasts and COS7 cells, which were co-localized with molecules in the autophagosome system. A protease inhibitor MG132 reduced the soluble fraction of p.G64R-DOK7 and enhanced the aggresome formation of p.G64R-DOK7. To match the differentiation levels between patient-derived and control induced pluripotent stem cells (iPSCs), we corrected c.190G>A (p.G64R) by CRISPR/Cas9 to make isogenic iPSCs while retaining c.653-1G>C (CMS-iPSCsCas9). Myogenically differentiated CMS-iPSCs showed juxtanuclear aggregates of DOK7, reduced expression of endogenous DOK7 and reduced phosphorylation of endogenous MuSK. Another mutation, p.T77M, also made aggresome to a less extent compared with p.G64R in transfected COS7 cells. These results suggest that p.G64R-DOK7 makes aggresomes in cultured cells and is likely to compromise MuSK phosphorylation for AChR clustering.


Subject(s)
Induced Pluripotent Stem Cells , Myasthenic Syndromes, Congenital , Humans , Cells, Cultured , Induced Pluripotent Stem Cells/metabolism , Muscle Proteins/genetics , Mutation , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Phosphorylation , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism
10.
Sci Rep ; 12(1): 11918, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831372

ABSTRACT

Anticancer drugs and molecular targeted therapies are used for refractory desmoid-type fibromatosis (DF), but occasionally cause severe side effects. The purpose of this study was to identify an effective drug with fewer side effects against DF by drug repositioning, and evaluate its efficacy. FDA-approved drugs that inhibit the proliferation of DF cells harboring S45F mutations of CTNNB1 were screened. An identified drug was subjected to the investigation of apoptotic effects on DF cells with analysis of Caspase 3/7 activity. Expression of ß-catenin was evaluated with western blot analysis, and immunofluorescence staining. Effects of the identified drug on in vivo DF were analyzed using Apc1638N mice. Auranofin was identified as a drug that effectively inhibits the proliferation of DF cells. Auranofin did not affect Caspase 3/7 activity compared to control. The expression level of ß-catenin protein was not changed regardless of auranofin concentration. Auranofin effectively inhibited the development of tumorous tissues by both oral and intraperitoneal administration, particularly in male mice. Auranofin, an anti-rheumatic drug, was identified to have repositioning effects on DF. Since auranofin has been used for many years as an FDA-approved drug, it could be a promising drug with fewer side effects for DF.


Subject(s)
Fibromatosis, Aggressive , beta Catenin , Animals , Auranofin/pharmacology , Auranofin/therapeutic use , Caspase 3/genetics , Fibromatosis, Aggressive/drug therapy , Fibromatosis, Aggressive/genetics , Male , Mice , Mutation , beta Catenin/genetics
11.
Int J Mol Sci ; 23(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35456905

ABSTRACT

KIAA1199 has a strong hyaluronidase activity in inflammatory arthritis. This study aimed to identify a drug that could reduce KIAA1199 activity and clarify its effects on inflammatory arthritis. Rat chondrosarcoma (RCS) cells were strongly stained with Alcian blue (AB). Its stainability was reduced in RCS cells, which were over-expressed with the KIAA1199 gene (RCS-KIAA). We screened the drugs that restore the AB stainability in RCS-KIAA. The effects of the drug were evaluated by particle exclusion assay, HA ELISA, RT-PCR, and Western blotting. We further evaluated the HA accumulation and the MMP1 and three expressions in fibroblast-like synoviocytes (FLS). In vivo, the effects of the drug on symptoms and serum concentration of HA in a collagen-induced arthritis mouse were evaluated. Ipriflavone was identified to restore AB stainability at 23%. Extracellular matrix formation was significantly increased in a dose-dependent manner (p = 0.006). Ipriflavone increased the HA accumulation and suppressed the MMP1 and MMP3 expression on TNF-α stimulated FLS. In vivo, Ipriflavone significantly improved the symptoms and reduced the serum concentrations of HA. Conclusions: We identified Ipriflavone, which has inhibitory effects on KIAA1199 activity. Ipriflavone may be a therapeutic candidate based on its reduction of KIAA1199 activity in inflammatory arthritis.


Subject(s)
Arthritis, Experimental , Synoviocytes , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Drug Repositioning , Fibroblasts/metabolism , Hyaluronic Acid/pharmacology , Hyaluronoglucosaminidase/metabolism , Isoflavones , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Mice , Rats , Synoviocytes/metabolism
12.
Am J Sports Med ; 50(5): 1317-1327, 2022 04.
Article in English | MEDLINE | ID: mdl-35234523

ABSTRACT

BACKGROUND: Wnt/ß-catenin signaling suppresses the differentiation of cultured tenocytes, but its roles in tendon repair remain mostly elusive. No chemical compounds are currently available to treat tendon injury. HYPOTHESIS: We hypothesized that the inhibition of Wnt/ß-catenin signaling would accelerate tendon healing. STUDY DESIGN: Controlled laboratory study. METHODS: Tendon-derived cells (TDCs) were isolated from rat Achilles tendons. The right Achilles tendon was injured via a dermal punch, while the left tendon was sham operated. A Wnt/ß-catenin inhibitor, IWR-1, and an antihistamine agent, promethazine (PH), were locally and intramuscularly injected, respectively, for 2 weeks after surgery. The healing tendons were histologically and biomechanically evaluated. RESULTS: The amount of ß-catenin protein was increased in the injured tendons from postoperative weeks 0.5 to 2. Inhibition of Wnt/ß-catenin signaling by IWR-1 in healing tendons improved the histological abnormalities and decreased ß-catenin, but it compromised the biomechanical properties. As we previously reported that antihistamine agents suppressed Wnt/ß-catenin signaling in human chondrosarcoma cells, we examined the effects of antihistamines on TDCs. We found that a first-generation antihistamine agent, PH, increased the expression of the tendon marker genes Mkx and Tnmd in TDCs. Intramuscular injection of PH did not improve histological abnormalities, but it decreased ß-catenin in healing tendons and increased the peak force and stiffness of the healing tendons on postoperative week 2. On postoperative week 8, however, the biomechanical properties of vehicle-treated tendons became similar to those of PH-treated tendons. CONCLUSION: IWR-1 and PH suppressed Wnt/ß-catenin signaling and improved the histological abnormalities of healing tendons. IWR-1, however, compromised the biomechanical properties of healing tendons, whereas PH improved them. CLINICAL RELEVANCE: PH is a candidate repositioned drug that potentially accelerates tendon repair.


Subject(s)
Achilles Tendon , Promethazine , Achilles Tendon/injuries , Animals , Biomechanical Phenomena , Humans , Promethazine/metabolism , Promethazine/pharmacology , Rats , Rats, Sprague-Dawley , Wnt Signaling Pathway , Wound Healing/physiology , beta Catenin/metabolism , beta Catenin/pharmacology
13.
Biochem Biophys Res Commun ; 592: 87-92, 2022 02 12.
Article in English | MEDLINE | ID: mdl-35033871

ABSTRACT

We screened pre-approved drugs for the survival of the Hu5/KD3 human myogenic progenitors. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, promoted the proliferation and survival of Hu5/KD3 cells. Meclozine increased expression of MyoD, but reduced expression of myosin heavy chain and suppressed myotube formation. Withdrawal of meclozine, however, resumed the ability of Hu5/KD3 cells to differentiate into myotubes. We examined the effects of meclozine on mdx mouse carrying a nonsense mutation in the dystrophin gene and modeling for Duchenne muscular dystrophy. Intragastric administration of meclozine in mdx mouse increased the body weight, the muscle mass in the lower limbs, the cross-sectional area of the paravertebral muscle, and improved exercise performances. Previous reports show that inhibition of phosphorylation of ERK1/2 improves muscle functions in mouse models for Emery-Dreifuss muscular dystrophy and cancer cachexia, as well as in mdx mice. We and others previously showed that meclozine blocks the phosphorylation of ERK1/2 in cultured cells. We currently showed that meclozine decreased phosphorylation of ERK1/2 in muscles in mdx mice but not in wild-type mice. This was likely to be one of the underlying mechanisms of the effects of meclozine on mdx mice.


Subject(s)
Meclizine/pharmacology , Muscle Strength/physiology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Male , Meclizine/therapeutic use , Mice, Inbred C57BL , Mice, Inbred mdx , Motor Activity/drug effects , Muscle Development/drug effects , Muscle Strength/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Phosphorylation/drug effects
14.
EMBO J ; 40(22): e107485, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34605568

ABSTRACT

Although large exons cannot be readily recognized by the spliceosome, many are evolutionarily conserved and constitutively spliced for inclusion in the processed transcript. Furthermore, whether large exons may be enriched in a certain subset of proteins, or mediate specific functions, has remained unclear. Here, we identify a set of nearly 3,000 SRSF3-dependent large constitutive exons (S3-LCEs) in human and mouse cells. These exons are enriched for cytidine-rich sequence motifs, which bind and recruit the splicing factors hnRNP K and SRSF3. We find that hnRNP K suppresses S3-LCE splicing, an effect that is mitigated by SRSF3 to thus achieve constitutive splicing of S3-LCEs. S3-LCEs are enriched in genes for components of transcription machineries, including mediator and BAF complexes, and frequently contain intrinsically disordered regions (IDRs). In a subset of analyzed S3-LCE-containing transcription factors, SRSF3 depletion leads to deletion of the IDRs due to S3-LCE exon skipping, thereby disrupting phase-separated assemblies of these factors. Cytidine enrichment in large exons introduces proline/serine codon bias in intrinsically disordered regions and appears to have been evolutionarily acquired in vertebrates. We propose that layered splicing regulation by hnRNP K and SRSF3 ensures proper phase-separation of these S3-LCE-containing transcription factors in vertebrates.


Subject(s)
Exons , Serine-Arginine Splicing Factors/genetics , Transcription Factors/genetics , Vertebrates/genetics , Animals , Cell Line , Cytidine/genetics , Evolution, Molecular , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Humans , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Mice , Polyadenylation , RNA Splicing , RNA-Binding Proteins/genetics , Serine-Arginine Splicing Factors/metabolism , Transcription Factors/metabolism
15.
Neuropharmacology ; 195: 108637, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34097946

ABSTRACT

Decreased acetylcholine receptor (AChR) clustering compromises signal transmission at the neuromuscular junction (NMJ) in myasthenia gravis, congenital myasthenic syndromes, and motor neuron diseases. Although the enhancement of AChR clustering at the NMJ is a promising therapeutic strategy for these maladies, no drug is currently available for this enhancement. We previously reported that zonisamide (ZNS), an anti-epileptic and anti-Parkinson's disease drug, enhances neurite elongation of the primary spinal motor neurons (SMNs). As nerve sprouting occurs to compensate for the loss of AChR clusters in human diseases, we examined the effects of ZNS on AChR clustering at the NMJ. To this end, we established a simple and quick co-culture system to reproducibly make in vitro NMJs using C2C12 myotubes and NSC34 motor neurons. ZNS at 1-20 µM enhanced the formation of AChR clusters dose-dependently in co-cultured C2C12 myotubes but not in agrin-treated single cultured C2C12 myotubes. We observed that molecules that conferred responsiveness to ZNS were not secreted into the co-culture medium. We found that 10 µM ZNS upregulated the expression of neuregulin-1 (Nrg1) in co-cultured cells but not in single cultured C2C12 myotubes or single cultured NSC34 motor neurons. In accordance with this observation, inhibition of the Nrg1/ErbB signaling pathways nullified the effect of 10 µM ZNS on the enhancement of AChR clustering in in vitro NMJs. Although agrin was not induced by 10 µM ZNS in co-cultured cells, anti-agrin antibody attenuated ZNS-mediated enhancement of AChR clustering. We conclude that ZNS enhances agrin-dependent AChR-clustering by upregulating the Nrg1/ErbB signaling pathways in the presence of NMJs.


Subject(s)
Gene Expression Regulation/drug effects , Neuregulin-1/genetics , Neuromuscular Junction/drug effects , Receptors, Cholinergic/metabolism , Zonisamide/pharmacology , Animals , Cell Line , Coculture Techniques , Mice , Motor Neurons/drug effects , Motor Neurons/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Neuregulin-1/metabolism , Neuromuscular Junction/genetics , Neuromuscular Junction/metabolism
16.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671084

ABSTRACT

: Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, Schwartz-Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/ß-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.


Subject(s)
Muscle Proteins/metabolism , Neuromuscular Agents/metabolism , Neuromuscular Junction Diseases/physiopathology , Neuromuscular Junction/physiology , Animals , Humans , Signal Transduction
17.
Front Mol Neurosci ; 13: 154, 2020.
Article in English | MEDLINE | ID: mdl-33117128

ABSTRACT

The neuromuscular junction (NMJ) is a prototypic chemical synapse between the spinal motor neuron and the motor endplate. Gene expression profiles of the motor endplate are not fully elucidated. Collagen Q (ColQ) is a collagenic tail subunit of asymmetric forms of acetylcholinesterase and is driven by two distinct promoters. pColQ1 is active throughout the slow-twitch muscle, whereas pColQ1a is active at the motor endplate of fast-twitch muscle. We made a transgenic mouse line that expresses nuclear localization signal (NLS)-attached Cre recombinase under the control of pColQ1a (pColQ1a-Cre mouse). RiboTag mouse expresses an HA-tagged ribosomal subunit, RPL22, in cells expressing Cre recombinase. We generated pColQ1a-Cre:RiboTag mouse, and confirmed that HA-tagged RPL22 was enriched at the NMJ of tibialis anterior (TA) muscle. Next, we confirmed that Chrne and Musk that are specifically expressed at the NMJ were indeed enriched in HA-immunoprecipitated (IP) RNA, whereas Sox10 and S100b, markers for Schwann cells, and Icam1, a marker for vascular endothelial cells, and Pax3, a marker for muscle satellite cells, were scarcely detected. Gene set enrichment analysis (GSEA) of RNA-seq data showed that "phosphatidylinositol signaling system" and "extracellular matrix receptor interaction" were enriched at the motor endplate. Subsequent analysis revealed that genes encoding diacylglycerol kinases, phosphatidylinositol kinases, phospholipases, integrins, and laminins were enriched at the motor endplate. We first characterized the gene expression profile under translation at the motor endplate of TA muscle using the RiboTag technique. We expect that our gene expression profiling will help elucidate molecular mechanisms of the development, maintenance, and pathology of the NMJ.

18.
Life Sci ; 263: 118577, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33058918

ABSTRACT

Neuropathic pain is caused by a lesion or a functional impairment of the sensory nervous system and allodynia is one of the frequently observed symptoms in neuropathic pain. Allodynia represents abnormal pain due to a non-noxious stimulus that does not normally provoke pain. Cellular mechanisms underlying neuropathic pain remain mostly elusive, and partial pain relief can be achieved in a limited number of patients by antidepressants, anticonvulsants topical anesthetics, and others. Zonisamide (ZNS) is widely used as an anti-epileptic and anti-Parkinson's disease drug. A recent report shows that ZNS suppresses neuropathic pain associated with diabetes mellitus in a mouse model. We made a mouse model of neuropathic pain in the hindlimb by cutting the nerve at the intervertebral canal at lumbar level 4 (L4). At 28 days after nerve injury, ZNS ameliorated allodynic pain, and reduced the expression of inflammatory cytokines and the nerve injury-induced increase of Iba1-positive microglia in the spinal dorsal horn at L4. In BV2 microglial cells, ZNS reduced the number of lipopolysaccharide-induced amoeboid-shaped cells, representing activated microglia. These results suggest that ZNS is a potential therapeutic agent for neuropathic pain partly by suppressing microglia-mediated neuroinflammation.


Subject(s)
Anticonvulsants/pharmacology , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Zonisamide/pharmacology , Animals , Cytokines/metabolism , Disease Models, Animal , Hyperalgesia/physiopathology , Male , Mice , Microglia/metabolism , Neuralgia/physiopathology , Spinal Cord/metabolism
19.
Sci Rep ; 10(1): 13138, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753675

ABSTRACT

Cervical spondylotic myelopathy (CSM) is caused by chronic compression of the spinal cord and is the most common cause of myelopathy in adults. No drug is currently available to mitigate CSM. Herein, we made a rat model of CSM by epidurally implanting an expanding water-absorbent polymer underneath the laminae compress the spinal cord. The CSM rats exhibited progressive motor impairments recapitulating human CSM. CSM rats had loss of spinal motor neurons, and increased lipid peroxidation in the spinal cord. Zonisamide (ZNS) is clinically used for epilepsy and Parkinson's disease. We previously reported that ZNS protected primary spinal motor neurons against oxidative stress. We thus examined the effects of ZNS on our rat CSM model. CSM rats with daily intragastric administration of 0.5% methylcellulose (n = 11) and ZNS (30 mg/kg/day) in 0.5% methylcellulose (n = 11). Oral administration of ZNS ameliorated the progression of motor impairments, spared the number of spinal motor neurons, and preserved myelination of the pyramidal tracts. In addition, ZNS increased gene expressions of cystine/glutamate exchange transporter (xCT) and metallothionein 2A in the spinal cord in CSM rats, and also in the primary astrocytes. ZNS increased the glutathione (GSH) level in the spinal motor neurons of CSM rats. ZNS potentially ameliorates loss of the spinal motor neurons and demyelination of the pyramidal tracts in patients with CSM.


Subject(s)
Spinal Cord Compression/drug therapy , Spinal Cord Diseases/drug therapy , Spondylosis/drug therapy , Zonisamide/pharmacology , Animals , Cervical Vertebrae/metabolism , Cervical Vertebrae/pathology , Disease Models, Animal , Disease Progression , Female , Motor Neurons/metabolism , Motor Neurons/pathology , Rats , Rats, Wistar , Spinal Cord Compression/metabolism , Spinal Cord Compression/pathology , Spinal Cord Diseases/metabolism , Spinal Cord Diseases/pathology , Spondylosis/metabolism , Spondylosis/pathology
20.
EMBO Rep ; 21(8): e48462, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32558157

ABSTRACT

At the neuromuscular junction (NMJ), lipoprotein-related receptor 4 (LRP4) mediates agrin-induced MuSK phosphorylation that leads to clustering of acetylcholine receptors (AChRs) in the postsynaptic region of the skeletal muscle. Additionally, the ectodomain of LRP4 is necessary for differentiation of the presynaptic nerve terminal. However, the molecules regulating LRP4 have not been fully elucidated yet. Here, we show that the CT domain of connective tissue growth factor (CTGF/CCN2) directly binds to the third beta-propeller domain of LRP4. CTGF/CCN2 enhances the binding of LRP4 to MuSK and facilitates the localization of LRP4 on the plasma membrane. CTGF/CCN2 enhances agrin-induced MuSK phosphorylation and AChR clustering in cultured myotubes. Ctgf-deficient mouse embryos (Ctgf-/- ) have small AChR clusters and abnormal dispersion of synaptic vesicles along the motor axon. Ultrastructurally, the presynaptic nerve terminals have reduced numbers of active zones and mitochondria. Functionally, Ctgf-/- embryos exhibit impaired NMJ signal transmission. These results indicate that CTGF/CCN2 interacts with LRP4 to facilitate clustering of AChRs at the motor endplate and the maturation of the nerve terminal.


Subject(s)
Connective Tissue Growth Factor , LDL-Receptor Related Proteins , Agrin/genetics , Agrin/metabolism , Animals , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Mice , Neuromuscular Junction/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...