Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Med Sci ; 78(5): 761-7, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26781706

ABSTRACT

Stimulation with heavy metals is known to induce calcium (Ca(2+)) mobilization in many cell types. Interference with the measurement of intracellular Ca(2+) concentration by the heavy metals in cells loaded with Ca(2+) indicator fura-2 is an ongoing problem. In this study, we analyzed the effect of heavy metals on the fura-2 fluorescence ratio in human SH-SY5Y neuroblastoma cells by using TPEN, a specific cell-permeable heavy metal chelator. Manganese chloride (30-300 µM) did not cause significant changes in the fura-2 fluorescence ratio. A high concentration (300 µM) of lead acetate induced a slight elevation in the fura-2 fluorescence ratio. In contrast, stimulation with cadmium chloride, mercury chloride or MeHg (3-30 µM) elicited an apparent elevation of the fura-2 fluorescence ratio in a dose-dependent manner. In cells stimulated with 10 or 30 µM cadmium chloride, the addition of TPEN decreased the elevated fura-2 fluorescence ratio to basal levels. In cells stimulated with mercury or MeHg, the addition of TPEN significantly decreased the elevation of the fura-2 fluorescence ratio induced by lower concentrations (10 µM) of mercury or MeHg, but not by higher concentrations (30 µM). Pretreatment with Ca(2+) channel blockers, such as verapamil, 2-APB or lanthanum chloride, resulted in different effects on the fura-2 fluorescence ratio. Our study provides a characterization of the effects of several heavy metals on the mobilization of divalent cations and the toxicity of heavy metals to neuronal cells.


Subject(s)
Cadmium Poisoning/drug therapy , Chelating Agents/pharmacology , Ethylenediamines/pharmacology , Fura-2/metabolism , Mercury Poisoning/drug therapy , Methylmercury Compounds/poisoning , Boron Compounds/pharmacology , Calcium/analysis , Calcium Channel Blockers/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Fluorescence , Humans , Lanthanum/pharmacology , Neuroblastoma/chemistry , Neuroblastoma/metabolism , Verapamil/pharmacology
2.
Neuroreport ; 24(5): 241-5, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23399995

ABSTRACT

Adolescent rats emit 50 kHz ultrasonic vocalizations, a marker of positive emotion, during rough-and-tumble play or on tickling stimulation. The emission of 50 kHz ultrasonic vocalizations in response to tickling is suggested to be mediated by dopamine release in the nucleus accumbens; however, there is no direct evidence supporting this hypothesis. The present study aimed to elucidate whether play behavior (tickling) in adolescent rats can trigger dopamine release in the nucleus accumbens with hedonic 50 kHz ultrasonic vocalizations. The effect of tickling stimulation was compared with light-touch stimulation, as a discernible stimulus. We examined 35-40-day-old rats, which corresponds to the period of midadolescence. Tickling stimulation for 5 min significantly increased dopamine release in the nucleus accumbens (118±7% of the prestimulus control value). Conversely, light-touch stimulation for 5 min did not significantly change dopamine release. In addition, 50 kHz ultrasonic vocalizations were emitted during tickling stimulation but not during light-touch stimulation. Further, tickling-induced 50 kHz ultrasonic vocalizations were significantly blocked by the direct application of SCH23390 (D1 receptor antagonist) and raclopride (D2/D3 receptor antagonist) into the nucleus accumbens. Our study demonstrates that tickling stimulation in adolescent rats increases dopamine release in the nucleus accumbens, leading to the generation of 50 kHz ultrasonic vocalizations.


Subject(s)
Dopamine/metabolism , Nucleus Accumbens/metabolism , Play and Playthings , Ultrasonics , Vocalization, Animal/physiology , Animals , Benzazepines/pharmacology , Dopamine Antagonists/pharmacology , Male , Microdialysis , Motor Activity/drug effects , Nucleus Accumbens/drug effects , Rats , Rats, Inbred Strains , Vocalization, Animal/drug effects
3.
J Physiol Sci ; 62(3): 259-66, 2012 May.
Article in English | MEDLINE | ID: mdl-22411566

ABSTRACT

We investigated the effect of mild (non-noxious) tactile stimulation (stroking) of skin on dopamine (DA) release in the nucleus accumbens (NAc) of rats. A coaxial microdialysis probe was stereotaxically implanted in the NAc and perfused with modified Ringer's solution. Dialysate output from consecutive 5-min periods was injected into a high-performance liquid chromatograph and DA was measured using an electrochemical detector. Bilateral tactile stimulation of the back for 5 min significantly increased DA release in conscious and anesthetized animals. Increased DA release was observed by stimulation of the contralateral, but not ipsilateral, back. DA secretion was also increased with stimulation of the forelimb, hindlimb, and abdomen. These effects were abolished after lesioning the ventral tegmental area (VTA). In contrast, noxious stimulation (pinching) of these areas had no effect on DA secretion. In conclusion, innocuous mechanical stimulation of the skin increases DA release in the contralateral NAc via the VTA.


Subject(s)
Dopamine/metabolism , Skin Physiological Phenomena , Therapeutic Touch , Abdomen , Animals , Forelimb , Functional Laterality , Hindlimb , Male , Nucleus Accumbens , Rats , Rats, Wistar , Stress, Mechanical , Ventral Tegmental Area/physiology
4.
Ann Neurol ; 62(6): 671-5, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17994547

ABSTRACT

Certain low-molecular-weight substrate analogs act both as in vitro competitive inhibitors of lysosomal hydrolases and as intracellular enhancers (chemical chaperones) by stabilization of mutant proteins. In this study, we performed oral administration of a chaperone compound N-octyl-4-epi-beta-valienamine to G(M1)-gangliosidosis model mice expressing R201C mutant human beta-galactosidase. A newly developed neurological scoring system was used for clinical assessment. N-Octyl-4-epi-beta-valienamine was delivered rapidly to the brain, increased beta-galactosidase activity, decreased ganglioside G(M1), and prevented neurological deterioration within a few months. No adverse effect was observed during this experiment. N-Octyl-4-epi-beta-valienamine will be useful for chemical chaperone therapy of human G(M1)-gangliosidosis.


Subject(s)
Gangliosidosis, GM1/drug therapy , Gangliosidosis, GM1/physiopathology , Hexosamines/therapeutic use , Molecular Chaperones/therapeutic use , Nervous System/drug effects , Nervous System/physiopathology , Animals , Brain/metabolism , Gangliosidosis, GM1/metabolism , Hexosamines/pharmacokinetics , Humans , Immunohistochemistry , Kidney/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Chaperones/pharmacokinetics , Mutation , Nervous System/metabolism , Osmolar Concentration , Tissue Distribution , beta-Galactosidase/deficiency , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...