Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Nano ; 4(7): 3606-10, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20527801

ABSTRACT

A novel system for fractionating single wall carbon nanotubes (SWCNTs) by length via a three-step cross-flow filtration has been developed in which three membrane filters of different pore sizes, 1.0, 0.45, and 0.2 microm, were used. SWCNTs dispersed in water with the help of sodium carboxymethylcellulose (CMC) detergents were successfully sorted into four samples, and the atomic force microscopy (AFM) observation of those samples confirmed that their length distribution peaks are within the expected ranges from pore sizes of used filters. However, the result of the similar filtration process using a different detergent, sodium dodecylbenzenesulfonate (SDBS), showed no pronounced correlation between the length distribution of SWCNTs and the pore size. The observed difference in the sorting phenomena caused by the detergent type suggests that the permeation property depends on the complex structure resulting from the dispersed SWCNTs and detergent molecules.

3.
J Nanosci Nanotechnol ; 8(11): 6153-7, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19198357

ABSTRACT

A novel approach for selective diameter control of single-walled carbon nanotubes (SWNTs) is performed in the gas-phase growth using two kinds of carbon sources with different decomposition properties; the one carbon source (1st carbon source) is the organic solvent which is difficult to decompose in the reactor and the another carbon source (2nd carbon source) is facile to decompose. The diameter distributions of SWNTs synthesized with various conditions of the flow rate of the 2nd carbon source were investigated by resonant Raman scattering, optical absorption, and photoluminescence (PL) mapping measurements. It was found that increasing the flow rate of the ethylene tends to decrease the diameter of synthesized SWNTs, probably due to the earlier nucleation of SWNTs induced by the ethylene addition. The controlling the flow rate of the ethylene used as a 2nd carbon source can selectively tune the diameter distribution of SWNTs in our growth system.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Titanium/chemistry , Gases/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Phase Transition , Surface Properties
4.
Sci Technol Adv Mater ; 9(2): 024405, 2008 Apr.
Article in English | MEDLINE | ID: mdl-27877972

ABSTRACT

Hybrid density functional theory (DFT) calculations have been carried out for neutral and radical cation species of a fused selenophene oligomer, denoted by Se(n), where n represents the number of selenophene rings in the oligomer, to elucidate the electronic structures at ground and low-lying excited states. A polymer of fused selenophene was also investigated using one-dimensional periodic boundary conditions (PBC) for comparison. It was found that the reorganization energy of a radical cation of Se(n) from a vertical hole trapping point to its relaxed structure is significantly small. Also, the reorganization energy decreased gradually with increasing n, indicating that Se(n) has an effective intramolecular hole transport property. It was found that the radical cation species of Se(n) has a low-energy band in the near-IR region, which is strongly correlated to hole conductivity. The relationship between the electronic states and intramolecular hole conductivity was discussed on the basis of theoretical calculations.

SELECTION OF CITATIONS
SEARCH DETAIL