Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Gan To Kagaku Ryoho ; 51(3): 231-236, 2024 Mar.
Article in Japanese | MEDLINE | ID: mdl-38494798

ABSTRACT

Return of individual genomic results(ROGR)to participants in population-based biobank has been rarely conducted in research settings, and the procedure of ROGR performed in foreign countries may not be simply applied to Japanese participants, because of the difference in social background. The Tohoku Medical Megabank Project, which was launched in 2012 aiming to build a foundation of personalized genomic medicine, obtained the consent from research participants by explaining the future possibility of ROGR. After careful consideration of appropriate procedure for ROGR, individual genomic results were returned to 111 pathogenic variant(PV)carriers of hereditary breast and ovarian cancer syndrome(HBOC)or Lynch syndrome(LS)based on 50,000 whole genome sequencing(WGS)data in FY 2022. Since majority of the participants has no cancer diagnosis, participants' right to not know was carefully considered. In addition, the variants to be returned were carefully evaluated by using multiple databases, and the WGS results of the participants were further confirmed by the single- site analysis. When the genomic results were returned, the participants were informed about clinical risk surveillance at the hospital. Seventy-eight and 33 PV carriers of HBOC and LS, respectively, participated in the study. Most participants were in their 30s or 40s. Unexpectedly, validation testing results of 12 LS participants were found to be negative or variant of uncertain significance, because detecting these variants by WGS were technically challenging. Twenty-eight participants (HBOC 20, LS 8)had been diagnosed as cancer, and 6 females who had breast cancer were genetically diagnosed as HBOC and underwent or planned risk-reducing surgery. Eighteen participants refused to undergo clinical risk surveillance because of the medical expense that is not covered by health insurance and the burden of visiting the hospital. The opportunity to undergo medical surveillance should be provided to population-based cohort participants who carry actionable pathogenic variants, and ROGR to general population should be promoted to create the base of personalized genomic medicine.


Subject(s)
Hereditary Breast and Ovarian Cancer Syndrome , Female , Humans , Cohort Studies , Genetic Predisposition to Disease , Genomics , Germ Cells
2.
J Biochem ; 175(6): 611-627, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38268329

ABSTRACT

Whole blood transcriptome analysis is a valuable approachin medical research, primarily due to the ease of sample collection and the richness of the information obtained. Since the expression profile of individual genes in the analysis is influenced by medical traits and demographic attributes such as age and gender, there has been a growing demand for a comprehensive database for blood transcriptome analysis. Here, we performed whole blood RNA sequencing (RNA-seq) analysis on 576 participants stratified by age (20-30s and 60-70s) and gender from cohorts of the Tohoku Medical Megabank (TMM). A part of female segment included pregnant women. We did not exclude the globin gene family in our RNA-seq study, which enabled us to identify instances of hereditary persistence of fetal hemoglobin based on the HBG1 and HBG2 expression information. Comparing stratified populations allowed us to identify groups of genes associated with age-related changes and gender differences. We also found that the immune response status, particularly measured by neutrophil-to-lymphocyte ratio (NLR), strongly influences the diversity of individual gene expression profiles in whole blood transcriptome analysis. This stratification has resulted in a data set that will be highly beneficial for future whole blood transcriptome analysis in the Japanese population.


Subject(s)
Gene Expression Profiling , Transcriptome , Humans , Female , Male , Adult , Middle Aged , Gene Expression Profiling/methods , Japan , Aged , Young Adult , Age Factors , Sex Factors , Asian People/genetics , East Asian People
3.
Breast Cancer ; 30(1): 110-120, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36161580

ABSTRACT

BACKGROUND: Recent advances in human genome research have provided evidence for genotype-phenotype associations, pathogenicity, and clinical actionability of variants and genomic risk prediction of disease. However, the return of individual genomic results to healthy individuals is fraught with ethical and practical complexity. METHODS: Individual genomic results were returned to BRCA1/2 pathogenic variant (PV) carriers of the Tohoku Medical Megabank cohort study participants with an information on hereditary breast and ovarian cancer syndrome (HBOC). One hundred and eighty participants, including 9 BRCA1/2 PV carriers, were asked about their willingness to receive individual genomic results, without revealing the gene name and related disorders, prior to the study. Of the 142 participants who responded, 103 showed willingness to know their genomic information. Each of the six BRCA1/2 PV carriers who consented to participate in the study received information about HBOC in person and underwent validation testing with blood resampling. RESULTS: All participants were in their 60s or 70s; of the four females and two males, two had a history of breast cancer and five had a family history of HBOC-related cancers. All participants appreciated the information, without remarkable negative psychological impact of the return, and intended to undergo clinical risk surveillance. Five participants were accompanied by family members while receiving the results, and three first-degree female relatives wished to undergo genomic testing at the hospital. CONCLUSIONS: Our results suggest that returning actionable genomic information to participants in a population-based genome cohort study is beneficial for preventing or providing early-stage intervention for associated diseases.


Subject(s)
Breast Neoplasms , Hereditary Breast and Ovarian Cancer Syndrome , Ovarian Neoplasms , Male , Humans , Female , Breast Neoplasms/genetics , Cohort Studies , BRCA1 Protein/genetics , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Genomics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/prevention & control , Genetic Predisposition to Disease , BRCA2 Protein/genetics
4.
Nutrients ; 16(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38201974

ABSTRACT

(1) Background: Breast milk is the only source of nutrition for breastfed infants, but few studies have examined the relationship between breast milk micronutrients and infant neurodevelopmental outcome in exclusively breastfed infants. The aim of this study was to characterize the association between nicotinamide adenine dinucleotide (NAD)-related compounds in the breast milk of Japanese subjects and infant neurodevelopmental outcome. (2) Methods: A total of 150 mother-child pairs were randomly selected from the three-generation cohort of the Tohoku Medical Megabank in Japan. Infants were exclusively breastfed for up to 6 months. Breast milk was collected at 1 month postpartum, and the quantity of NAD-related substances in the breast milk was quantified. The mothers also completed developmental questionnaires at 6, 12, and 24 months. The relationship between the concentration of NAD-related substances in breast milk and developmental indicators was evaluated via ordinal logistic regression analysis. (3) Results: Nicotinamide mononucleotide (NMN) was quantified as the major NAD precursor in breast milk. The median amount of NMN in the breast milk was 9.2 µM. The NMN concentration in breast milk was the only NAD-related substance in breast milk that showed a significant positive correlation with neurodevelopmental outcome in infants at 24 months. (4) Conclusions: The results suggest that NMN in human milk may be an important nutrient for early childhood development.


Subject(s)
Milk, Human , Nicotinamide Mononucleotide , Child, Preschool , Female , Infant , Humans , NAD , Cohort Studies , Nucleotides
5.
iScience ; 25(9): 104942, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36072552

ABSTRACT

Mast cells serve as a first-line defense of innate immunity. Interleukin-6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in mast cells plays a crucial role in antibacterial protection. The zinc finger transcription factor GATA2 cooperatively functions with the ETS family transcription factor PU.1 in multiple mast cell activities. However, the regulatory landscape directed by GATA2 and PU.1 under inflammation remains elusive. We herein showed that a large proportion of GATA2-binding peaks were closely located with PU.1-binding peaks in distal cis-regulatory regions of inflammatory cytokine genes in mast cells. Notably, GATA2 and PU.1 played crucial roles in promoting LPS-mediated inflammatory cytokine production. Genetic ablation of GATA2-PU.1-clustered binding sites at the Il6 -39 kb region revealed its central role in LPS-induced Il6 expression in mast cells. We demonstrate a novel collaborative activity of GATA2 and PU.1 in cytokine induction upon inflammatory stimuli via the GATA2-PU.1 overlapping sites in the distal cis-regulatory regions.

6.
JMA J ; 5(2): 177-189, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35611229

ABSTRACT

Introduction: Pharmacogenomic (PGx) testing results provide valuable information on drug selection and appropriate dosing, maximization of efficacy, and minimization of adverse effects. Although the number of large-scale, next-generation-sequencing-based PGx studies has recently increased, little is known about the risks and benefits of returning PGx results to ostensibly healthy individuals in research settings. Methods: Single-nucleotide variants of three actionable PGx genes, namely, MT-RNR1, CYP2C19, and NUDT15, were returned to 161 participants in a population-based Tohoku Medical Megabank project. Informed consent was obtained from the participants after a seminar on the outline of this study. The results were sent by mail alongside sealed information letter intended for clinicians. As an exception, genetic counseling was performed for the MT-RNR1 m.1555A > G variant carriers by a medical geneticist, and consultation with an otolaryngologist was encouraged. Questionnaire surveys (QSs) were conducted five times to evaluate the participants' understanding of the topic, psychological impact, and attitude toward the study. Results: Whereas the majority of participants were unfamiliar with the term PGx, and none had undergone PGx testing before the study, more than 80% of the participants felt that they could acquire basic PGx knowledge sufficient to understand their genomic results and were satisfied with their potential benefit and use in future prescriptions. On the other hand, some felt that the PGx concepts or terminology was difficult to fully understand and suggested that in-person return of the results was desirable. Conclusions: These results collectively suggest possible benefits of returning preemptive PGx information to ostensibly healthy cohort participants in a research setting.

7.
J Hum Genet ; 67(1): 9-17, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34234266

ABSTRACT

Certain large genome cohort studies attempt to return the individual genomic results to the participants; however, the implementation process and psychosocial impacts remain largely unknown. The Tohoku Medical Megabank Project has conducted large genome cohort studies of general residents. To implement the disclosure of individual genomic results, we extracted the potential challenges and obstacles. Major challenges include the determination of genes/disorders based on the current medical system in Japan, the storage of results, prevention of misunderstanding, and collaboration of medical professionals. To overcome these challenges, we plan to conduct multilayer pilot studies, which deal with different disorders/genes. We finally chose familial hypercholesterolemia (FH) as a target disease for the first pilot study. Of the 665 eligible candidates, 33.5% were interested in the pilot study and provided consent after an educational "genetics workshop" on the basic genetics and medical facts of FH. The genetics professionals disclosed the results to the participants. All positive participants were referred to medical care, and a serial questionnaire revealed no significant psychosocial distress after the disclosure. Return of genomic results to research participants was implemented using a well-prepared protocol. To further elucidate the impact of different disorders, we will perform multilayer pilot studies with different disorders, including actionable pharmacogenomics and hereditary tumor syndromes.


Subject(s)
Genetics, Medical , Genome , Genomics , Research , Databases, Genetic , Disclosure , Genomics/methods , Humans , Japan , Pharmacogenetics , Pilot Projects , Research Design
8.
Sci Rep ; 10(1): 17315, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057147

ABSTRACT

Aging induces numerous cellular disorders, such as the elevation of reactive oxygen species (ROS), in a number type of cells, including mesenchymal stem cells (MSCs). However, the correlation of ROS and impaired healing abilities as well as whether or not the inhibition of elevating ROS results in the rejuvenation of elderly MSCs is unclear. The rejuvenation of aged MSCs has thus recently received attention in the field of regenerative medicine. Specifically, extracellular vesicles (EVs) act as a novel tool for stem cell rejuvenation due to their gene transfer ability with systemic effects and safety. In the present study, we examined the roles of aging-associated ROS in the function and rejuvenation of elderly MSCs by infant EVs. The data clearly showed that elderly MSCs exhibited the downregulation of superoxide dismutase (SOD)1 and SOD3, which resulted in the elevation of ROS and downregulation of the MEK/ERK pathways, which are involved in the impairment of the MSCs' ability to decrease necrotic area in the skin flap model. Furthermore, treatment with the antioxidant Edaravone or co-overexpression of SOD1 and SOD3 rescued elderly MSCs from the elevation of ROS and cellular senescence, thereby improving their functions. Of note, infant MSC-derived EVs rejuvenated elderly MSCs by inhibiting ROS production and the acceleration of cellular senescence and promoting the proliferation and in vivo functions in both type 1 and type 2 diabetic mice.


Subject(s)
Extracellular Vesicles/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Reactive Oxygen Species/metabolism , Rejuvenation/physiology , Aging/metabolism , Animals , Cellular Senescence/physiology , Diabetes Mellitus, Experimental/metabolism , Humans , MAP Kinase Signaling System , Mesenchymal Stem Cells/metabolism , Mice , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolism
9.
Int J Mol Sci ; 20(18)2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533351

ABSTRACT

Mast cell tryptases have crucial roles in allergic and inflammatory diseases. The mouse tryptase genes represent a cluster of loci on chromosome 16p3.3. While their functional studies have been extensively performed, transcriptional regulation of tryptase genes is poorly understood. In this study, we examined the molecular basis of the tryptase gene expression in bone marrow-derived mast cells (BMMCs) of C57BL/6 mice and in MEDMC-BRC6 mast cells. The expression of the Tpsb2 and Tpsg1 genes, which reside at the 3'-end of the tryptase locus, is significantly decreased by the reduction of the GATA transcription factors GATA1 or GATA2. Chromatin immunoprecipitation assays have shown that the GATA factors bind at multiple regions within the locus, including 1.0 and 72.8 kb upstream of the Tpsb2 gene, and that GATA1 and GATA2 facilitate each other's DNA binding activity to these regions. Deletion of the -72.8 kb region by genome editing significantly reduced the Tpsb2 and Tpsg1 mRNA levels in MEDMC-BRC6 cells. Furthermore, binding of CTCF and the cohesin subunit Rad21 was found upstream of the -72.8 kb region and was significantly reduced in the absence of GATA1. These results suggest that mouse tryptase gene expression is coordinately regulated by GATA1 and GATA2 in BMMCs.


Subject(s)
Bone Marrow Cells/metabolism , GATA1 Transcription Factor/metabolism , GATA2 Transcription Factor/metabolism , Gene Expression Regulation , Mast Cells/metabolism , Tryptases/genetics , Animals , Gene Knockout Techniques , Genetic Loci , Mice , Promoter Regions, Genetic , Protein Binding , RNA, Small Interfering/genetics , Tryptases/metabolism
10.
Mol Cell Biol ; 39(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31501274

ABSTRACT

GATA factors GATA1 and GATA2 and ETS factor PU.1 are known to function antagonistically during hematopoietic development. In mouse mast cells, however, these factors are coexpressed and activate the expression of the Ms4a2 gene encoding the ß chain of the high-affinity IgE receptor (FcεRI). The present study showed that these factors cooperatively regulate Ms4a2 gene expression through distinct mechanisms. Although GATA2 and PU.1 contributed almost equally to Ms4a2 gene expression, gene ablation experiments revealed that simultaneous knockdown of both factors showed neither a synergistic nor an additive effect. A chromatin immunoprecipitation analysis showed that they shared DNA binding to the +10.4-kbp region downstream of the Ms4a2 gene with chromatin looping factor LDB1, whereas the proximal -60-bp region was exclusively bound by GATA2 in a mast cell-specific manner. Ablation of PU.1 significantly reduced the level of GATA2 binding to both the +10.4-kbp and -60-bp regions. Surprisingly, the deletion of the +10.4-kbp region by genome editing completely abolished the Ms4a2 gene expression as well as the cell surface expression of FcεRI. These results suggest that PU.1 and LDB1 play central roles in the formation of active chromatin structure whereas GATA2 directly activates the Ms4a2 promoter.


Subject(s)
GATA2 Transcription Factor/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, IgE/genetics , Trans-Activators/metabolism , Animals , Bone Marrow Cells/cytology , Chromatin Immunoprecipitation , DNA-Binding Proteins/metabolism , GATA2 Transcription Factor/genetics , Gene Expression Regulation , LIM Domain Proteins/metabolism , Mast Cells/metabolism , Mice , Mice, Knockout , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Receptors, IgE/metabolism , Trans-Activators/genetics
11.
Mol Cell Endocrinol ; 483: 39-49, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30615908

ABSTRACT

The transcription factor GATA2 is an anti-adipogenic factor whose expression is downregulated during adipocyte differentiation. The present study attempted to clarify the molecular mechanism underlying the GATA2 repression and found that the repression is dependent on the activation of the glucocorticoid receptor (GR) during 3T3-L1 preadipocyte differentiation. Although several recognition sequences for GR were found in both the proximal and distal regions of the Gata2 locus, the promoter activity was not affected by the GR activation in the reporter assays, and the CRISPR-Cas9-mediated deletion of the two distal regions of the Gata2 locus was not involved in the GR-mediated Gata2 repression. Notably, the level of histone acetylation was markedly reduced at the Gata2 locus during 3T3-L1 differentiation, and the GR-mediated Gata2 repression was significantly relieved by histone deacetylase inhibition. These results suggest that GR regulates the Gata2 gene by reducing histone acetylation in the early phase of adipogenesis.


Subject(s)
Adipocytes/cytology , GATA2 Transcription Factor/genetics , Histones/metabolism , Receptors, Glucocorticoid/metabolism , 3T3-L1 Cells , Acetylation , Adipocytes/metabolism , Animals , Cell Differentiation , Down-Regulation , Epigenesis, Genetic , GATA2 Transcription Factor/metabolism , Gene Expression Regulation , Mice , Promoter Regions, Genetic , Transcriptional Activation
12.
Stem Cells Dev ; 26(13): 948-963, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28537846

ABSTRACT

Chronic kidney disease (CKD) results in a delay in wound healing because of its complications such as uremia, anemia, and fluid overload. Mesenchymal stem cells (MSCs) are considered to be a candidate for wound healing because of the ability to recruit many types of cells. However, it is still unclear whether the CKD-adipose tissue-derived MSCs (CKD-AT-MSCs) have the same function in wound healing as healthy donor-derived normal AT-MSCs (nAT-MSCs). In this study, we found that uremic toxins induced elevated reactive oxygen species (ROS) expression in nAT-MSCs, resulting in the reduced expression of hypoxia-inducible factor-1α (HIF-1α) under hypoxic conditions. Consistent with the uremic-treated AT-MSCs, there was a definite imbalance of redox state and high expression of ROS in CKD-AT-MSCs isolated from early-stage CKD patients. In addition, a transplantation study clearly revealed that nAT-MSCs promoted the recruitment of inflammatory cells and recovery from ischemia in the mouse flap model, whereas CKD-AT-MSCs had defective functions and the wound healing process was delayed. Of note, the expression of prolyl hydroxylase domain 2 (PHD2) is selectively increased in CKD-AT-MSCs and its inhibition can restore the expression of HIF-1α and the wound healing function of CKD-AT-MSCs. These results indicate that more studies about the functions of MSCs from CKD patients are required before they can be applied in the clinical setting.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mesenchymal Stem Cells/metabolism , Wound Healing/genetics , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Disease Models, Animal , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Mesenchymal Stem Cell Transplantation , Mice , Reactive Oxygen Species/metabolism , Renal Insufficiency, Chronic/metabolism , Wound Healing/physiology
13.
Biochem Biophys Res Commun ; 477(1): 68-75, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27282479

ABSTRACT

Mesenchymal stem cells (MSCs) are defined as multipotent cells that can give rise to various kinds of differentiated mesenchymal cells, and are thus considered to be useful for clinical therapy. However, the big hurdles of MSC therapy are the inability of MSCs to reach the appropriate tissues or sites with high efficiency and engraftment after transplantation. In this study, we investigated how adipose tissue-derived MSCs (AT-MSCs) improve their homing ability after intravenous injection. We previously found that human endothelial progenitor cells with low aldehyde dehydrogenase activity (Alde-Low EPCs) are suitable for the treatment of ischemic tissues. In addition, we demonstrated that microvesicles (MVs) derived from Alde-Low EPCs possessed the ability to improve the homing ability of non-functional Alde-High EPCs, resulting in wound healing. We initially transfected MVs derived from Alde-Low EPCs (EMVs) to human AT-MSCs, which were originally unable to cure ischemic tissues by intravenous transplantation. Remarkably, AT-MSC transfected EMVs dramatically repaired the ischemic skin flap compared with AT-MSC derived-MV (MMVs) transfected AT-MSCs or control AT-MSCs. We then found that the expression of CXCR4, an important chemokine receptor for cell migration, was highly elevated in EMV-transfected AT-MSCs. Moreover, AT-MSCs transfected with EMVs, but not control AT-MSCs, migrated to wound sites after intravenous injection. Consequently, CD45(+) inflammatory cells were successfully recruited at the wound sites after the injection of EMV-transfected AT-MSCs. These results demonstrate that EMVs are a useful source to improve the homing ability and wound healing ability of MSCs at the wound sites.


Subject(s)
Endothelial Progenitor Cells/cytology , Mesenchymal Stem Cells/cytology , Wound Healing , Animals , Mice , Mice, Inbred C57BL
14.
Biochem Biophys Res Commun ; 473(4): 1111-1118, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27063802

ABSTRACT

Microvesicles (MVs) derived from mesenchymal stem cells showed the ability to alter the cell phenotype and function. We previously demonstrated that type 2 diabetic adipose tissue-derived mesenchymal stem cells (dAT-MSCs) increase in cell aggregation and adhesion in vitro and impair wound healing in vivo. However, the characterization and function of MVs derived from human non-diabetic AT-MSCs (nAT-MSCs) remain unknown. In this study, we characterized nAT-MSC-derived MVs and their function after the transfection of dAT-MSCs with MVs using the scratch assay and a flap mouse model. We found that human nAT-MSC-derived MVs expressed MSC-surface markers and improved dAT-MSC functions by altering the expression of genes associated with cell migration, survival, inflammation, and angiogenesis as well as miR29c and miR150. Remarkably, the transfection of dAT-MSCs with nAT-MSC-derived MVs improved their migration ability in vitro and wound healing ability in a flap mouse model. These results demonstrate a promising opportunity to modify the function of dAT-MSCs for therapeutic stem cell application in diabetic patients.


Subject(s)
Adipocytes/cytology , Cell-Derived Microparticles/transplantation , Diabetes Mellitus, Type 2/pathology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Wound Healing/physiology , Animals , Cell Movement , Cell-Derived Microparticles/pathology , Cell-Derived Microparticles/physiology , Female , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred C57BL , Treatment Outcome
15.
Stem Cells Dev ; 25(10): 760-73, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26988763

ABSTRACT

The prevalence of type 2 diabetes mellitus (T2DM), which leads to diabetic complications, has been increasing worldwide. The possible applications of T2DM-derived stem cells in cell therapy are limited because their characteristics are still not fully understood. In this study, we characterized adipose tissue-derived mesenchymal stem cells (AT-MSCs) from diabetic patients (dAT-MSCs) and found that insulin receptor substrate-1 (IRS-1) was highly phosphorylated at serine 636/639 in dAT-MSCs. Moreover, we found that early growth response factor-1 (EGR-1) and its target genes of PTEN and GGPS1 were highly expressed in dAT-MSCs in comparison to healthy donor-derived AT-MSCs (nAT-MSCs). We observed impaired wound healing after the injection of dAT-MSCs in the ischemic flap mouse model. The expressions of EGR-1 and its target genes were diminished by small hairpin RNA-targeted EGR-1 (shEGR-1) and treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) inhibitor (PD98059). Importantly, dAT-MSCs with shEGR-1 were able to restore the wound healing ability in the mouse model. Interestingly, under hypoxic conditions, hypoxia-inducible factor-1α (HIF-1α) can bind to the EGR-1 promoter in dAT-MSCs, but not in nAT-MSCs. Together, these results demonstrate that the expression of EGR-1 was upregulated in dAT-MSCs through two pathways: the main regulatory pathway is the MAPK/ERK pathway, the other is mediated by HIF-1α through direct transcriptional activation at the promoter region of the EGR1 gene. Our study suggests that dAT-MSCs may contribute to microvascular damage and delay wound healing through the overexpression of EGR-1. Interrupting the expression of EGR-1 in dAT-MSCs may be a useful treatment for chronic wounds in diabetic patients.


Subject(s)
Adipose Tissue/pathology , Diabetes Mellitus, Type 2/pathology , Early Growth Response Protein 1/metabolism , Mesenchymal Stem Cells/metabolism , Wound Healing , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Membrane/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Male , Mice, Inbred C57BL , Middle Aged , Skin/pathology , Surgical Flaps
16.
Stem Cells Dev ; 25(3): 266-76, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26620723

ABSTRACT

Endothelial progenitor cells (EPCs) have the ability to form new blood vessels and protect ischemic tissues from damage. We previously reported that EPCs with low activity of aldehyde dehydrogenase (Alde-Low EPCs) possess the greater ability to treat ischemic tissues compared with Alde-High EPCs. The expression level of the hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, was found to be greater in Alde-Low EPCs than in Alde-High EPCs. However, the precise role of the HIF factors in the regulation of EPC activity remains obscure. In this study, we demonstrate a critical role of HIF-2α and its target gene CXCR4 for controlling the migratory activity of EPC to ischemic tissue. We found that coculture of Alde-High EPCs with microvesicles derived from Alde-Low EPCs improved their ability to repair an ischemic skin flap, and the expression of CXCR4 and its ligand SDF1 was significantly increased following the coculture. In Alde-Low EPCs, the expression of CXCR4 was suppressed by short hairpin RNA (shRNA)-mediated HIF-2α, but not HIF-1α downregulation. Chromatin immunoprecipitation assays showed that HIF-2α, but not HIF-1α, binds to the promoter region of CXCR4 gene. The CXCR4 shRNA treatment in Alde-Low EPCs almost completely abrogated their migratory activity to ischemic tissues, whereas the reduction of vascular endothelial growth factor (VEGF) showed much less effect. The CXCR4 overexpression in Alde-High EPCs resulted in a partial, but significant improvement in their repairing ability in an ischemic skin flap. Collectively, these findings indicate that the CXCR4/SDF-1 axis, which is specifically regulated by HIF-2α, plays a crucial role in the regulation of EPC migration to ischemic tissues.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Movement , Endothelial Progenitor Cells/metabolism , Receptors, CXCR4/metabolism , Wound Healing , Aldehyde Dehydrogenase/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Chemokine CXCL12/metabolism , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/physiology , Humans , Ischemia/metabolism , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Protein Binding , Receptors, CXCR4/genetics , Skin/blood supply , Skin/metabolism
17.
Blood ; 125(21): 3306-15, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25855601

ABSTRACT

GATA2 plays a crucial role for the mast cell fate decision. We herein demonstrate that GATA2 is also required for the maintenance of the cellular identity in committed mast cells derived from mouse bone marrow (BMMCs). The deletion of the GATA2 DNA binding domain (GATA2ΔCF) in BMMCs resulted in a loss of the mast cell phenotype and an increase in the number of CD11b- and/or Ly6G/C-positive cells. These cells showed the ability to differentiate into macrophage- and neutrophil-like cells but not into eosinophils. Although the mRNA levels of basophil-specific genes were elevated, CD49b, a representative basophil marker, never appeared on these cells. GATA2 ablation led to a significant upregulation of C/EBPα, and forced expression of C/EBPα in wild-type BMMCs phenocopied the GATA2ΔCF cells. Interestingly, simultaneous deletion of the Gata2 and Cebpa genes in BMMCs restored the aberrant increases of CD11b and Ly6G/C while retaining the reduced c-Kit expression. Chromatin immunoprecipitation assays indicated that GATA2 directly binds to the +37-kb region of the Cebpa gene and thereby inhibits the RUNX1 and PU.1 binding to the neighboring region. Upregulation of C/EBPα following the loss of GATA2 was not observed in cultured mast cells derived from peritoneal fluid, whereas the repression of c-Kit and other mast cell-specific genes were observed in these cells. Collectively, these results indicate that GATA2 maintains cellular identity by preventing Cebpa gene activation in a subpopulation of mast cells, whereas it plays a fundamental role as a positive regulator of mast cell-specific genes throughout development of this cell lineage.


Subject(s)
Bone Marrow Cells/cytology , Cell Dedifferentiation/immunology , GATA2 Transcription Factor/metabolism , Mast Cells/cytology , Stem Cells/cytology , Animals , Blotting, Western , Cell Differentiation/immunology , Chromatin Immunoprecipitation , Flow Cytometry , GATA2 Transcription Factor/immunology , Mast Cells/metabolism , Mice , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction
18.
Mol Cell Biol ; 35(10): 1825-37, 2015 May.
Article in English | MEDLINE | ID: mdl-25755285

ABSTRACT

GATA1 is a key transcription factor for erythropoiesis. GATA1 gene expression is strictly regulated at the transcriptional level. While the regulatory mechanisms governing mouse Gata1 (mGata1) gene expression have been studied extensively, how expression of the human GATA1 (hGATA1) gene is regulated remains to be elucidated. To address this issue, we generated hGATA1 bacterial artificial chromosome (BAC) transgenic mouse lines harboring a 183-kb hGATA1 locus covering the hGATA1 exons and distal flanking sequences. Transgenic hGATA1 expression coincides with endogenous mGata1 expression and fully rescues hematopoietic deficiency in mGata1 knockdown mice. The transgene exhibited copy number-dependent and integration position-independent expression of hGATA1, indicating the presence of chromatin insulator activity within the transgene. We found a novel insulator element at 29 kb 5' to the hGATA1 gene and refer to this element as the 5' CCCTC-binding factor (CTCF) site. Substitution mutation of the 5' CTCF site in the hGATA1 BAC disrupted the chromatin architecture and led to a reduction of hGATA1 expression in splenic erythroblasts under conditions of stress erythropoiesis. Our results demonstrate that expression of the hGATA1 gene is regulated through the chromatin architecture organized by 5' CTCF site-mediated intrachromosomal interactions in the hGATA1 locus.


Subject(s)
Chromosomes/genetics , Erythroblasts/metabolism , GATA1 Transcription Factor/genetics , Insulator Elements , Spleen/cytology , Animals , Binding Sites , CCCTC-Binding Factor , Cells, Cultured , Chromatin/physiology , Chromosomes, Artificial, Bacterial/genetics , GATA1 Transcription Factor/chemistry , GATA1 Transcription Factor/metabolism , Genetic Vectors/genetics , Humans , K562 Cells , Mice , Mice, Transgenic , Repressor Proteins/metabolism , Spleen/metabolism
19.
Genes Cells ; 20(3): 224-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25626335

ABSTRACT

The variants of the hypoxia-inducible factor-3α gene HIF-3α and NEPAS are known to repress the transcriptional activities driven by HIF-1α and HIF-2α. Although NEPAS has been shown to play an important role in vascular remodeling during lung development, little is known about the roles of HIF-3α in adult lung function. Here, we examined pulmonary endothelial cells (ECs) isolated from wild-type (WT) and HIF-3α functional knockout (KO) mice. The expression levels of angiogenic factors (Flk1, Ang2 and Tie2) were significantly greater in the HIF-3α KO ECs than those in the WT ECs irrespective of oxygen tension. However, the HIF-3α KO ECs showed impaired proliferative and angiogenic activities. The impaired EC function was likely due to the excess vascular endothelial (VE)-cadherin, an inhibitor of Flk1/PI3 kinase/Akt signaling, as treatment of the cells to a neutralizing antibody partly restored the phenotype of the HIF-3α KO ECs. Importantly, we found that the mRNA levels of HIF-2α and Ets-1 were significantly increased by HIF-3α ablation. Given that both factors are known to activate the VE-cadherin gene, the transcriptional repression of these factors by HIF-3α might be important for silencing the irrelevant expression of the VE-cadherin gene. Collectively, these data show novel and unique roles of HIF-3α for angiogenic gene regulation in pulmonary ECs.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Endothelial Cells/metabolism , Lung/cytology , Neovascularization, Physiologic , Transcription Factors/genetics , Transcription Factors/metabolism , Angiogenic Proteins/metabolism , Animals , Antigens, CD/genetics , Apoptosis Regulatory Proteins , Cadherins/genetics , Cell Hypoxia , Lung/blood supply , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-akt/metabolism , Repressor Proteins , Vascular Endothelial Growth Factor A/metabolism
20.
Mol Cell Biol ; 35(5): 805-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25535330

ABSTRACT

GATA1 is a master regulator of erythropoiesis, expression of which is regulated by multiple discrete cis-acting elements. In this study, we examine the activity of a promoter-proximal double GATA (dbGATA) motif, using a Gata1 bacterial artificial chromosome (BAC)-transgenic green fluorescent protein (GFP) reporter (G1BAC-GFP) mouse system. Deletion of the dbGATA motif led to significant reductions in GFP expression in hematopoietic progenitors, while GFP expression was maintained in erythroblasts. Consistently, in mice with a germ line deletion of the dbGATA motif (Gata1(ΔdbGATA) mice), GATA1 expression in progenitors was significantly decreased. The suppressed GATA1 expression was associated with a compensatory increase in GATA2 levels in progenitors. When we crossed Gata1(ΔdbGATA) mice with Gata2 hypomorphic mutant mice (Gata2(fGN/fGN) mice), the Gata1(ΔdbGATA)::Gata2(fGN/fGN) compound mutant mice succumbed to a significant decrease in the progenitor population, whereas both groups of single mutant mice maintained progenitors and survived to adulthood, indicating the functional redundancy between GATA1 and GATA2 in progenitors. Meanwhile, the effects of the dbGATA site deletion on Gata1 expression were subtle in erythroblasts, which showed increased GATA1 binding and enhanced accumulation of active histone marks around the 1st-intron GATA motif of the ΔdbGATA locus. These results thus reveal a novel role of the dbGATA motif in the maintenance of Gata1 expression in hematopoietic progenitors and a functional compensation between the dbGATA site and the 1st-intron GATA motif in erythroblasts.


Subject(s)
Erythroblasts/cytology , GATA1 Transcription Factor/metabolism , Gene Expression Regulation , Hematopoietic Stem Cells/cytology , Alleles , Amino Acid Motifs , Animals , Cell Separation , Chromatin Immunoprecipitation , Chromosomes, Artificial, Bacterial , Erythropoiesis , Female , Flow Cytometry , GATA2 Transcription Factor/metabolism , Gene Deletion , Genes, Reporter , Green Fluorescent Proteins/metabolism , Homeostasis , Introns , Male , Mice , Mice, Transgenic , Mutation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...