Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
PLoS One ; 19(8): e0306021, 2024.
Article in English | MEDLINE | ID: mdl-39088432

ABSTRACT

Sporadic inclusion body myositis (sIBM) is a muscle disease in older people and is characterized by inflammatory cell invasion into intact muscle fibers and rimmed vacuoles. The pathomechanism of sIBM is not fully elucidated yet, and controversy exists as to whether sIBM is a primary autoimmune disease or a degenerative muscle disease with secondary inflammation. Previously, we established a method of collecting CD56-positive myoblasts from human skeletal muscle biopsy samples. We hypothesized that the myoblasts derived from these patients are useful to see the cell-autonomous pathomechanism of sIBM. With these resources, myoblasts were differentiated into myotubes, and the expression profiles of cell-autonomous pathology of sIBM were analyzed. Myoblasts from three sIBM cases and six controls were differentiated into myotubes. In the RNA-sequencing analysis of these "myotube" samples, 104 differentially expressed genes (DEGs) were found to be significantly upregulated by more than twofold in sIBM, and 13 DEGs were downregulated by less than twofold. For muscle biopsy samples, a comparative analysis was conducted to determine the extent to which "biopsy" and "myotube" samples differed. Fifty-three DEGs were extracted of which 32 (60%) had opposite directions of expression change (e.g., increased in biopsy vs decreased in myotube). Apolipoprotein E (apoE) and transmembrane protein 8C (TMEM8C or MYMK) were commonly upregulated in muscle biopsies and myotubes from sIBM. ApoE and myogenin protein levels were upregulated in sIBM. Given that enrichment analysis also captured changes in muscle contraction and development, the triggering of muscle atrophy signaling and abnormal muscle differentiation via MYMK or myogenin may be involved in the pathogenesis of sIBM. The presence of DEGs in sIBM suggests that the myotubes formed from sIBM-derived myoblasts revealed the existence of muscle cell-autonomous degeneration in sIBM. The catalog of DEGs will be an important resource for future studies on the pathogenesis of sIBM focusing on primary muscle degeneration.


Subject(s)
Muscle Fibers, Skeletal , Myositis, Inclusion Body , Humans , Myositis, Inclusion Body/metabolism , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/pathology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Cell Differentiation , Aged , Female , Male , Cells, Cultured , Transcriptome , Myoblasts/metabolism , Myoblasts/pathology , Biopsy , Gene Expression Profiling , Middle Aged
2.
Stem Cell Reports ; 16(6): 1527-1541, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34048688

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Axons/metabolism , DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Transcription Factors/metabolism , Zebrafish/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , DNA-Binding Proteins/genetics , Gene Expression Regulation , Gene Knockdown Techniques/methods , Homeodomain Proteins/genetics , Humans , Mutation , Phenotype , Transcription Factors/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL