Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 669: 1006-1014, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38759591

ABSTRACT

Reducing iron by hydroxylamine (HA) can promote the generation of reactive oxygen species (ROS) in the Fenton reaction and play a crucial role in the degradation of organic pollutants. However, the performance of this system at wider environmental thresholds is still not sufficiently understood, especially in the highly alkaline environments resulting from human activities. Here, we assessed the impact of solution pH on organic pollutant degradation by goethite with the addition of HA and H2O2. The solid phase variation and ROS generation were analyzed using Mössbauer spectroscopy, X-ray absorption near edge structure spectroscopy, and electron paramagnetic resonance analysis. This study found that under alkaline conditions, the system can continuously scavenge organic pollutants through oxygen-mediated generation of free radicals. At lower pH levels, organic pollutant decomposition, exemplified by the breakdown of bisphenol A (BPA), is primarily driven by the Fenton reaction facilitated by iron. As pH increases, hydroxyl radical (•OH) production decreases, accompanied by decreased BPA removal efficiency. However, the removal efficiency of BPA increased significantly at pH > 9. At pH 12, the removal of BPA exceeded that of the acidic condition after one hour, which is consistent with observations in soil system studies. Unlike the Fenton reaction, which is not sensitive to oxygen content, the removal of BPA under alkaline conditions occurs only under aerobic conditions. H2O2 is hardly involved in the reaction, and the depletion of HA becomes a critical factor in the decomposition of BPA. Importantly, in contrast to acidic conditions, where the dramatic decomposition of BPA occurs mainly in the first 10 min, the decomposition of BPA under alkaline conditions continued to occur over the 2 h of observation until complete removal. For natural systems, the remediation of pollutants depends more on the active time of ROS than on their reactivity. Therefore, this idea can reference pollution remediation strategies in anthropogenically disturbed environments.

2.
J Hazard Mater ; 470: 134104, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569336

ABSTRACT

Understanding radioactive Cs contamination has been a central issue at Fukushima Daiichi and other nuclear legacy sites; however, atomic-scale characterization of radioactive Cs in environmental samples has never been achieved. Here we report, for the first time, the direct imaging of radioactive Cs atoms using high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In Cs-rich microparticles collected from Japan, we document inclusions that contain 27 - 36 wt% of Cs (reported as Cs2O) in a zeolite: pollucite. The compositions of three pollucite inclusions are (Cs1.86K0.11Rb0.19Ba0.22)2.4(Fe0.85Zn0.84X0.31)2.0Si4.1O12, (Cs1.19K0.05Rb0.19Ba0.22)1.7(Fe0.66Zn0.32X0.41)1.4Si4.6O12, and (Cs1.27K0.21Rb0.29Ba0.15)1.9(Fe0.60Zn0.32X0.69)1.6Si4.4O12 (X includes other cations). HAADF-STEM imaging of pollucite, viewed along the [111] zone axis, revealed an array of Cs atoms, which is consistent with a simulated image using the multi-slice method. The occurrence of pollucite indicates that locally enriched Cs reacted with siliceous substances during the Fukushima meltdowns, presumably through volatilization and condensation. Beta radiation doses from the incorporated Cs are estimated to reach 106 - 107 Gy, which is more than three orders of magnitude less than typical amorphization dose of zeolite. The atomic-resolution imaging of radioactive Cs is an important advance for better understanding the fate of radioactive Cs inside and outside of nuclear reactors damaged by meltdown events.

3.
Environ Sci Process Impacts ; 25(7): 1204-1212, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37317925

ABSTRACT

In this study, we report chemical species of Cs and I in condensed vaporized particles (CVPs) produced by melting experiments using nuclear fuel components containing CsI with concrete. Analyses of CVPs by SEM with EDX showed the formation of many round particles containing Cs and I of diameters less than ∼20 µm. X-ray absorption near-edge-structure and SEM-EDX analyses showed two kinds of particles: one containing large amounts of Cs and I, suggesting the presence of CsI, and the other containing small amounts of Cs and I with large Si content. When CVSs were placed in contact with deionized water, most of the CsI from both particles was dissolved. In contrast, some fractions of Cs remained from the latter particles and possessed different chemical species from CsI. In addition, the remaining Cs was concomitantly present with Si, resembling chemical components in the highly radioactive cesium-rich microparticles (CsMPs) released by nuclear plant accidents into the surrounding environments. These results strongly suggest that Cs was incorporated in CVSs along with Si by melting nuclear fuel components to form sparingly-soluble CVMPs.


Subject(s)
Cesium , Iodine , Cesium/chemistry , Iodine/chemistry , Volatilization , Nuclear Power Plants , Radioactive Hazard Release
4.
Front Microbiol ; 14: 1162788, 2023.
Article in English | MEDLINE | ID: mdl-37138623

ABSTRACT

Azoarcus sp. DN11 was previously isolated from gasoline-contaminated groundwater as an anaerobic benzene-degrading bacterium. Genome analysis of strain DN11 revealed that it contained a putative idr gene cluster (idrABP1P2 ), which was recently found to be involved in bacterial iodate (IO3 -) respiration. In this study, we determined if strain DN11 performed iodate respiration and assessed its potential use to remove and sequester radioactive iodine (129I) from subsurface contaminated aquifers. Strain DN11 coupled acetate oxidation to iodate reduction and grew anaerobically with iodate as the sole electron acceptor. The respiratory iodate reductase (Idr) activity of strain DN11 was visualized on non-denaturing gel electrophoresis, and liquid chromatography-tandem mass spectrometry analysis of the active band suggested the involvement of IdrA, IdrP1, and IdrP2 in iodate respiration. The transcriptomic analysis also showed that idrA, idrP1 , and idrP2 expression was upregulated under iodate-respiring conditions. After the growth of strain DN11 on iodate, silver-impregnated zeolite was added to the spent medium to remove iodide from the aqueous phase. In the presence of 200 µM iodate as the electron acceptor, more than 98% of iodine was successfully removed from the aqueous phase. These results suggest that strain DN11 is potentially helpful for bioaugmentation of 129I-contaminated subsurface aquifers.

5.
Chemosphere ; 328: 138566, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37011818

ABSTRACT

Radioactive Cs-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) are a potential health risk through inhalation. Little has been documented on the occurrence of CsMPs, particularly their occurrence inside buildings. In this study, we quantitatively analyze the distribution and number of CsMPs in indoor dust samples collected from an elementary school located 2.8 km to the southwest of FDNPP. The school had remained deserted until 2016. Then, using a modified version of the autoradiography-based "quantifying CsMPs (mQCP) method," we collected samples and determined the number of CsMPs and Cs radioactive fraction (RF) values of the microparticles (defined as total Cs activity from CsMPs/bulk Cs activity of the entire sample). The numbers of CsMPs ranged from 653 to 2570 particles/(g dust) and 296-1273 particles/(g dust) on the first and second floors of the school, respectively. The corresponding RFs ranged between 6.85 - 38.9% and 4.48-6.61%, respectively. The number of CsMPs and RF values in additional outdoor samples collected near the school building were 23-63 particles/(g dust or soil) and 1.14-1.61%, respectively. The CsMPs were most abundant on the school's first floor near to the entrance, and the relative abundance was higher near the stairs on the second floor, indicating a likely CsMP dispersion path through the building. Additional wetting of the indoor samples combined with autoradiography revealed that indoor dusts had a distinct absence of intrinsic, soluble Cs species, such as CsOH. These combined observations indicate that a significant amount of poorly soluble CsMPs were likely contained in initial radioactive airmass plumes from the FDNPP and that the microparticles penetrated buildings. CsMPs could still be abundant at the location, with locally high Cs activity in indoor environments near to openings.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Nuclear Power Plants , Radiation Monitoring/methods , Cesium , Dust , Schools , Japan , Water Pollutants, Radioactive/analysis
6.
Environ Sci Pollut Res Int ; 30(17): 49917-49929, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36787069

ABSTRACT

A novel magnetic Bi2WO6/TiO2/Fe3O4 photocatalyst was synthesized by a hydrothermal approach. The pattern, structure, elemental composition, light-absorbing properties, and magnetism of Bi2WO6/TiO2/Fe3O4 were characterized and analyzed. The performance, influencing factors, and mechanism of Bi2WO6/TiO2/Fe3O4 towards bisphenol A (BPA) degradation were investigated and deduced. BPA removal up to 95% was achieved with the addition of 1.25 g/L Bi/Ti/Fe2 (molar ratio of Bi2WO6:TiO2:Fe3O4 = 2:1:0.17) in the solution containing 10 mg/L BPA at pH 5.6. The performance of Bi/Ti/Fe2 was stable for five cycles at least after extracted from the reacted solution by magnet. Photoexcited h+, •OH, and •O2- formed in the reaction mainly contributed to BPA degradation. The Bi/Ti/Fe2 composite was composed of a three-layer petal structure from outside to inside to be Bi2WO6, TiO2, and Fe3O4. This structure was conducive in forming a heterojunction between TiO2 and Bi2WO6, inhibiting the merging of photoexcited e- and h+, and improving the photocatalytic efficiency.


Subject(s)
Light , Phenols , Phenols/chemistry , Benzhydryl Compounds/chemistry , Catalysis
7.
Chemosphere ; 313: 137526, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36513194

ABSTRACT

Biogenic manganese (Mn) oxides occur ubiquitously in the environment including the uranium (U) mill tailings at the Ningyo-toge U mine in Okayama, Japan, being important in the sequestration of radioactive radium. To understand the nanoscale processes in Mn oxides formation at the U mill tailings site, Mn2+ absorption by a basidiomycete fungus, Coprinopsis urticicola, isolated from Ningyo-toge mine water samples, was investigated in the laboratory under controlled conditions utilizing electron microscopy, synchrotron-based X-ray analysis, and fluorescence microscopy with a molecular pH probe. The fungus' growth was first investigated in an agar-solidified medium supplemented with 1.0 mmol/L Mn2+, and Cu2+ (0-200 µM), Zn2+ (0-200 µM), or diphenyleneiodonium (DPI) chloride (0-100 µM) at 25 °C. The results revealed that Zn2+ has no significant effects on Mn oxide formation, whereas Cu2+ and DPI significantly inhibit both fungal growth and Mn oxidation, indicating superoxide-mediated Mn oxidation. Indeed, nitroblue tetrazolium and diaminobenzidine assays on the growing fungus revealed the production of superoxide and peroxide. During the interaction of Mn2+ with the fungus in solution medium at the initial pH of 5.67, a small fraction of Mn2+ infiltrated the fungal hyphae within 8 h, forming a few tens of nm-sized concentrates of soluble Mn2+ in the intracellular pH of ∼6.5. After 1 day of incubation, Mn oxides began to precipitate on the hyphae, which were characterized as fibrous nanocrystals with a hexagonal birnessite-structure, these forming spherical aggregates with a diameter of ∼1.5 µm. These nanoscale processes associated with the fungal species derived from the Ningyo-toge mine area provide additional insights into the existing mechanisms of Mn oxidation by filamentous fungi at other U mill tailings sites under circumneutral pH conditions. Such processes add to the class of reactions important to the sequestration of toxic elements.


Subject(s)
Basidiomycota , Superoxides , Oxides/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction , Fungi
8.
Environ Res ; 217: 114874, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36457240

ABSTRACT

Due to the increasing of industrial plastic waste and its refractory characteristics, it is extremely urgent to develop new degradation technology and environmentally friendly catalyst for industrial plastic waste. Manganese oxides are one of the most promising candidates for the catalytic degradation of plastic wastes. However, an improved understanding of the structural properties affecting their catalytic activity is required for high-efficient wastewater treatment. We herein report the surface reactivity effects of δ-MnO2 structural defects with regards to Bisphenol A (BPA) degradation/probe in the presence of peroxymonosulfate (PMS). Four δ-MnOx samples with different Mn(III) contents (different Mn(III)-deficient sample) were prepared and their structural properties as well as surface reactivity were characterized by batch test, ESR and XAFS analysis. For the Mn(III)-deficient sample, BPA removal was principally affected by direct electron transfer, with the adsorbed BPA degraded following hydroxylation. In contrast, a small fraction of Mn(III) substitution in δ-MnO2 could significantly encouraged the activation of PMS to produce SO4-☐and ☐OH, and a BPA degradation via beta scission. Moreover, the Mn(III)-rich δ-MnO2 demonstrate a high BPA removal rate even with a low sample load, which performed well following a reuse of five times. Our results provide a new way for the improvement of δ-MnO2 activity for the use of industrial plastic wastes treatment.


Subject(s)
Manganese Compounds , Oxides , Oxides/chemistry , Oxidation-Reduction , Manganese Compounds/chemistry , Electrons , Peroxides
9.
J Hazard Mater ; 428: 128214, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35042164

ABSTRACT

Boron carbide control rods remain in the fuel debris of the damaged reactors in the Fukushima Daiichi Nuclear Power Plant, potentially preventing re-criticality; however, the state and stability of the control rods remain unknown. Sensitive high-resolution ion microprobe analyses have revealed B-Li isotopic signatures in radioactive Cs-rich microparticles (CsMPs) that formed by volatilization and condensation of Si-oxides during the meltdowns. The CsMPs contain 1518-6733 mg kg-1 of 10+11B and 11.99-1213 mg kg-1 of 7Li. The 11B/10B (4.15-4.21) and 7Li/6Li (213-406) isotopic ratios are greater than natural abundances (~4.05 and ~12.5, respectively), indicating that 10B(n,α)7Li reactions occurred in B4C prior to the meltdowns. The total amount of B released with CsMPs was estimated to be 0.024-62 g, suggesting that essentially all B remains in reactor Units 2 and/or 3 and is enough to prevent re-criticality; however, the heterogeneous distribution of B needs to be considered during decommissioning.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Cesium , Cesium Radioisotopes , Japan , Nuclear Power Plants , Volatilization
10.
J Hazard Mater ; 416: 125965, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34492877

ABSTRACT

This study contributes toward developing measures for the disposal of radiocesium-contaminated sewage sludge ash (SSA). Here, we prepared two types of solidified bodies containing 30 wt% radiocesium-bearing SSA. The material used for the two solidified bodies were alkaline-reacted metakaolinite (geopolymer) and ordinary Portland cement (OPC). Cement has been used for solidification of low-level radioactive wastes, and geopolymer is a candidate of cement alternative materials. The characteristics of these solidified bodies were investigated by various aspects including mechanical strength, transformation of SSA components during solidification, and radiocesium confinement ability by leaching test. The compressive strength of geopolymer- and OPC-solidified bodies at 30 wt% SSA content was more than 40 MPa. After static leaching test at 60 °C, 137Cs was hardly leached out from the geopolymer-solidified bodies containing SSA at 30 wt% to ultrapure water (<0.1%), whereas more than 30% 137Cs was leached from the OPC-solidified bodies containing SSA at 30 wt% even though only ~9% of 137Cs in the SSA is soluble. These results strongly indicate that geopolymer is far superior to OPC for solidifying radiocesium-bearing SSA.

11.
Sci Total Environ ; 773: 145639, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33940743

ABSTRACT

A contaminated zone elongated toward Futaba Town, north-northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP), contains highly radioactive particles released from reactor Unit 1. There are uncertainties associated with the physio-chemical properties and environmental impacts of these particles. In this study, 31 radioactive particles were isolated from surface soils collected 3.9 km north-northwest of the FDNPP. Two of these particles have the highest particle-associated 134+137Cs activity ever reported for Fukushima (6.1 × 105 and 2.5 × 106 Bq per particle after decay-correction to March 2011). The new, highly-radioactive particle labeled FTB1 is an aggregate of flaky silicate nanoparticles with an amorphous structure containing ~0.8 wt% Cs, occasionally associated with SiO2 and TiO2 inclusions. FTB1 likely originates from the reactor building, which was damaged by a H2 explosion, after adsorbing volatilized Cs. The 134+137Cs activity in the other highly radioactive particle labeled FTB26 exceeded 106 Bq. FTB26 has a glassy carbon core and a surface that is embedded with numerous micro-particles: Pb-Sn alloy, fibrous Al-silicate, Ca-carbonate or hydroxide, and quartz. The isotopic signatures of the micro-particles indicate neutron capture by B, Cs volatilization, and adsorption of natural Ba. The composition of the micro-particles on FTB26 reflects the composition of airborne particles at the moment of the H2 explosion. Owing to their large size, the health effects of the highly radioactive particles are likely limited to external radiation during static contact with skin; the highly radioactive particles are thus expected to have negligible health impacts for humans. By investigating the mobility of the highly radioactive particles, we can better understand how the radiation dose transfers through environments impacted by Unit 1. The highly radioactive particles also provide insights into the atmospheric conditions at the time of the Unit 1 explosion and the physio-chemical phenomena that occurred during reactor meltdown.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Radioactivity , Humans , Nuclear Power Plants , Silicon Dioxide
12.
Sci Total Environ ; 743: 140539, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32663681

ABSTRACT

Traces of Pu have been detected in material released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March of 2011; however, to date the physical and chemical form of the Pu have remained unknown. Here we report the discovery of particulate Pu associated with cesium-rich microparticles (CsMPs) that formed in and were released from the reactors during the FDNPP meltdowns. The Cs-pollucite-based CsMP contained discrete U(IV)O2 nanoparticles, <~10 nm, one of which is enriched in Pu adjacent to fragments of Zr-cladding. The isotope ratios, 235U/238U, 240Pu/239Pu, and 242Pu/239Pu, of the CsMPs were determined to be ~0.0193, ~0.347, and ~0.065, respectively, which are consistent with the calculated isotopic ratios of irradiated-fuel fragments. Thus, considering the regional distribution of CsMPs, the long-distance dispersion of Pu from FNDPP is attributed to the transport by CsMPs that have incorporated nanoscale fuel fragments prior to their dispersion up to 230 km away from the Fukushima Daiichi reactor site.


Subject(s)
Fukushima Nuclear Accident , Plutonium/analysis , Radiation Monitoring , Cesium Radioisotopes/analysis , Japan , Nuclear Power Plants
13.
Chemosphere ; 241: 125019, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31610456

ABSTRACT

The abundance and distribution of highly radioactive cesium-rich microparticles (CsMPs) that were released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the first stage of the nuclear disaster in March 2011 are described for 20 surface soils collected around the FDNPP. Based on the spatial distribution of the numbers (particles/g) and radioactive fraction (RF) of the CsMPs in surface soil, which is defined as the sum of the CsMP radioactivity (in Bq) divided by the total radioactivity (in Bq) of the soil sample, three regions of particular interest have been identified: i.) near-northwest (N-NW), ii.) far-northwest (F-NW), and iii.) southwest (SW). In these areas, the number and RF of CsMPs were determined to be 22.1-101 particles/g and 15.4-34.0%, 24.3-64.8 particles/g and 36.7-37.4%, and 0.869-8.00 particles/g and 27.6-80.2%, respectively. These distributions are consistent with the plume trajectories of material released from the FDNPP on March 14, 2011, in the late afternoon through to the late afternoon of March 15, 2011, indicating that the CsMPs formed only during this short period. Unit 3 is the most plausible source of the CsMPs at the beginning of the release based on an analysis of the sequence of release events. The lower RF values in the N-NW region indicate a larger influence from subsequent plumes that mainly consisted of soluble Cs species formed simultaneously with precipitation. The quantitative map of the distribution of CsMPs provides an important understanding of CsMP dispersion dynamics and can be used to assess risks in inhabited regions.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Nuclear Power Plants , Particulate Matter/analysis , Radioactive Pollutants/analysis , Japan , Particle Size , Radiation Monitoring , Radioactivity , Soil/chemistry
14.
J Hazard Mater ; 389: 121880, 2020 May 05.
Article in English | MEDLINE | ID: mdl-31843402

ABSTRACT

Low-level radioactive wastes are commonly immobilized in cementitious materials, where cement-based material can incorporate radionuclides into their crystal structure. Specifically, ettringite (Ca6Al2(OH)12(SO4)3∙26H2O) is known to stabilize anionic species, which is appealing for waste streams with radioactive iodine (129I) that persists as iodide (I-) and iodate (IO3-) in the cementitious nuclear waste repository. However, the structural information and immobilization mechanisms of iodine species in ettringite remain unclear. The present results suggested minimal I- incorporation into ettringite (0.05 %), whereas IO3- exhibited a high affinity for ettringite via anion substitution for SO42- (96 %). The combined iodine K-edge extended X-ray absorption fine structure (EXAFS) spectra and first-principles calculations using density functional theory (DFT) suggested that IO3- was stabilized in ettringite by hydrogen bonding and electrostatic forces. Substituting IO3- for SO42- was energetically favorable by -0.41 eV, whereas unfavorable substitution energy of 4.21 eV was observed for I- substitution. Moreover, the bonding charge density analysis of the substituted IO3- and I- anions into the ettringite structure revealed the interaction between intercalated ions with the structural water molecules. These results provided valuable insight into the long-term stabilization of anionic iodine species and their migration in cementitious nuclear waste repository or alkaline environments.

15.
J Environ Sci (China) ; 86: 78-86, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31787192

ABSTRACT

Permanganate treatment is widely used for disinfection of bacteria in surface-contaminated water. In this paper, the fate of the dissolved permanganate in aqueous solution after contact with cells of Pseudomonas fluorescens was studied. Concomitant accumulation of divalent cations of Mg2+, Zn2+, and Co2+ during precipitation of Mn oxides was also studied. The time course of the Mn concentration in solution showed an abrupt decrease after contact of Mn(VII) with microbial cells, followed by an increase after ~24 hr. XRD analysis of the precipitated Mn oxides, called biomass Mn oxides, showed the formation of low-crystalline birnessite. Visible spectroscopy and X-ray absorption near edge structure (XANES) analyses indicated that dissolved Mn(VII) was reduced to form biomass Mn oxides involving Mn(IV) and Mn(III), followed by reduction to soluble Mn(II). The numbers of electron transferred from microbial cells to permanganate and to biomass Mn oxides for 24 hr after the contact indicated that the numbers of electron transfer from microbial cell was approximately 50 times higher to dissolved permanganate than to the biomass Mn oxides in present experimental conditions. The 24 hr accumulation of divalent cations during formation of biomass Mn oxides was in the order of Co2+ > Zn2+ > Mg2+. XANES analysis of Co showed that oxidation of Co2+ to Co3+ resulted in higher accumulation of Co than Zn and Mg. Thus, treatment of surface water by KMnO4 solution is effective not only for disinfection of microorganisms, but also for the elimination of metal cations from surface water.


Subject(s)
Biodegradation, Environmental , Manganese Compounds/metabolism , Oxides/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Cations, Divalent , Cobalt/metabolism , Magnesium/metabolism , Water Pollutants, Chemical/analysis , Zinc/metabolism
16.
Chemosphere ; 233: 633-644, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31195267

ABSTRACT

To understand the chemical durability of highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant in March 2011, we have, for the first time, performed systematic dissolution experiments with CsMPs isolated from Fukushima soils (one sample with 108 Bq and one sample with 57.8 Bq of 137Cs) using three types of solutions: simulated lung fluid, ultrapure water, and artificial sea water, at 25 and 37 °C for 1-63 days. The 137Cs was released rapidly within three days and then steady-state dissolution was achieved for each solution type. The steady-state 137Cs release rate at 25 °C was determined to be 4.7 × 103, 1.3 × 103, and 1. 3 × 103 Bq·m-2 s-1 for simulated lung fluid, ultrapure water, and artificial sea water, respectively. This indicates that the simulated lung fluid promotes the dissolution of CsMPs. The dissolution of CsMPs is similar to that of Si-based glass and is affected by the surface moisture conditions. In addition, the Cs release from the CsMPs is constrained by the rate-limiting dissolution of silicate matrix. Based on our results, CsMPs with ∼2 Bq, which can be potentially inhaled and deposited in the alveolar region, are completely dissolved after >35 years. Further, CsMPs could remain in the environment for several decades; as such, CsMPs are important factors contributing to the long-term impacts of radioactive Cs in the environment.


Subject(s)
Cesium Radioisotopes/analysis , Radiation Monitoring , Water Pollutants, Radioactive/analysis , Cesium , Fukushima Nuclear Accident , Glass , Japan , Nuclear Power Plants , Radioactivity , Seawater , Silicates , Soil , Solubility , Water
17.
Environ Sci Process Impacts ; 21(7): 1164-1173, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31165832

ABSTRACT

The fate of radioactive Cs deposited after the Fukushima nuclear power plant accident and its associated radiological impacts are largely dependent on its mobility from surface soils to forest ecosystems. We measured the accumulation of radioactive Cs in the fruit bodies of wild fungi in a forest at Iitate, Fukushima, Japan. The transfer factors (TFs) of radioactive Cs from soil to the fruit bodies of wild fungi were between 10-2 and 102, a range similar to that reported for the fruit bodies collected in Europe after the Chernobyl accident and in parts of Japan contaminated by the nuclear bomb test fallout. Comparison of the TFs of wild mushroom and those of fungal hyphae of 704 stock strains grown on agar medium containing nutrients and 137Cs showed that the TFs of wild mushroom were lower. The TF was less than 0.1 after the addition of the minerals zeolite, vermiculite, phlogopite, smectite, or illite of 1.0% weight to the agar medium. These results indicate that the presence of minerals decreases Cs uptake by fungi grown on the agar medium, and filamentous fungi still accumulate radioactive Cs even when minerals are present in the medium.


Subject(s)
Cesium Radioisotopes/analysis , Forests , Fukushima Nuclear Accident , Fungi/metabolism , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Japan , Radiation Monitoring , Radioactive Fallout
18.
Environ Int ; 126: 576-584, 2019 05.
Article in English | MEDLINE | ID: mdl-30852445

ABSTRACT

Silver-impregnated zeolite (AgIZ) has been used for removing radioiodine from contaminated groundwater and nuclear waste streams and the worldwide inventory of such secondary waste is rapidly increasing. The objective of this study was to 1) quantify the effectiveness of two grout waste forms for disposing of the used AgIZ, and 2) determine the I speciation leached from AgIZ encapsulated in grout. A 60-day kinetics batch experiment demonstrated that AgIZ encapsulated in slag-free grout was extremely effective at immobilizing I and Ag, a potential non-radioactive carcinogen. However, AgIZ encapsulated in slag-containing grout, the most common type of grout used for low-level radioactive waste disposal, was entirely ineffective at immobilizing I. While the slag-free grout with AgIZ released only 3.3 µg/L Itotal into the contact solution, the slag-containing grout released 19,269 µg/L Itotal. Based on thermodynamic calculations, the strongly reducing conditions of the slag-containing system (Eh was -392 mV) promoted the reductive dissolution of the AgI, forming Ag0(aq) and releasing iodide (I-) into the aqueous phase. The slag-free grout system was maintained under more oxidizing conditions (Eh was 439 mV) and a minimal amount of I was released from the grout. In both grout systems, the aqueous I, originally added to the AgZ as iodide, was composed primarily of iodide and org-I, and essentially no iodate was detected. More organo-I was detected in the slag-free than the slag-containing grout system because the high redox potential of the former system was more conducive to the formation of oxidized I species, such as I2, which may be intermediates in the covalent bonding of I with organic C in grout. Iodine K-edge XANES analysis indicated that I existed exclusively as silver iodide in both AgIZ-grout samples. Together, these results indicate that subsurface grout disposal of AgIZ waste should be done under oxidizing conditions and that radioiodide released from AgIZ can undergo speciation transformations that have important implications on subsequent mobility and estimated risk.


Subject(s)
Iodides/chemistry , Iodine Radioisotopes/chemistry , Radioactive Pollutants/chemistry , Radioactive Waste , Silver Compounds/chemistry , Zeolites/chemistry , Groundwater/chemistry , Iodine/chemistry , Oxidation-Reduction , Waste Management/methods
19.
Environ Sci Technol ; 52(11): 6390-6398, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29782160

ABSTRACT

Highly radioactive cesium-rich microparticles (CsMPs) were released from the Fukushima Daiichi nuclear power plant (FDNPP) to the surrounding environment at an early stage of the nuclear disaster in March of 2011; however, the quantity of released CsMPs remains undetermined. Here, we report a novel method to quantify the number of CsMPs in surface soils at or around Fukushima and the fraction of radioactivity they contribute, which we call "quantification of CsMPs" (QCP) and is based on autoradiography. Here, photostimulated luminescence (PSL) is linearly correlated to the radioactivity of various microparticles, with a regression coefficient of 0.0523 becquerel/PSL/h (Bq/PSL/h). In soil collected from Nagadoro, Fukushima, Japan, CsMPs were detected in soil sieved with a 114 µm mesh. There was no overlap between the radioactivities of CsMPs and clay particles adsorbing Cs. Based on the distribution of radioactivity of CsMPs, the threshold radioactivity of CsMPs in the size fraction of <114 µm was determined to be 0.06 Bq. Based on this method, the number and radioactivity fraction of CsMPs in four surface soils collected from the vicinity of the FDNPP were determined to be 48-318 particles per gram and 8.53-31.8%, respectively. The QCP method is applicable to soils with a total radioactivity as high as ∼106 Bq/kg. This novel method is critically important and can be used to quantitatively understand the distribution and migration of the highly radioactive CsMPs in near-surface environments surrounding Fukushima.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Radioactivity , Cesium , Cesium Radioisotopes , Japan , Nuclear Power Plants
20.
Sci Rep ; 8(1): 3648, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483563

ABSTRACT

To understand the competing effects of the components in extracellular substances (ES), polymeric substances (PS) and low-molecular-weight small substances (SS) <1 kDa derived from microorganisms, on the colloidal stability of cerium dioxide nanoparticles (CeNPs), we investigated their adsorption to sparingly soluble CeNPs at room temperature at pH 6.0. The ES was extracted from the fungus S. cerevisiae. The polypeptides and phosphates in all components preferentially adsorbed onto the CeNPs. The zeta potentials of ES + CeNPs, PS + CeNPs, and SS + CeNPs overlapped on the plot of PS itself, indicating the surface charge of the polymeric substances controls the zeta potentials. The sizes of the CeNP aggregates, 100-1300 nm, were constrained by the zeta potentials. The steric barrier derived from the polymers, even in SS, enhanced the CeNP dispersibility at pH 1.5-10. Consequently, the PS and SS had similar effects on modifying the CeNP surfaces. The adsorption of ES, which contains PS + SS, can suppress the aggregation of CeNPs over a wider pH range than that for PS only. The present study addresses the non-negligible effects of small-sized molecules derived from microbial activity on the migration of CeNP in aquatic environments, especially where bacterial consortia prevail.

SELECTION OF CITATIONS
SEARCH DETAIL
...