Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37571789

ABSTRACT

Subjective well-being (SWB) describes how well people experience and evaluate their current condition. Previous studies with electroencephalography (EEG) have shown that SWB can be related to frontal alpha asymmetry (FAA). While those studies only considered a single SWB score for each experimental session, our goal is to investigate such a correlation for individuals with a possibly different SWB every 60 or 30 s. Therefore, we conducted two experiments with 30 participants each. We used different temperature and humidity settings and asked the participants to periodically rate their SWB. We computed the FAA from EEG over different time intervals and associated the given SWB, leading to pairs of (FAA, SWB) values. After correcting the imbalance in the data with the Synthetic Minority Over-sampling Technique (SMOTE), we performed a linear regression and found a positive linear correlation between FAA and SWB. We also studied the best time interval sizes for determining FAA around each SWB score. We found that using an interval of 10 s before recording the SWB score yields the best results.


Subject(s)
Electroencephalography , Frontal Lobe , Humans , Electroencephalography/methods , Motivation , Linear Models
2.
Sensors (Basel) ; 22(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36433250

ABSTRACT

Recently, artificial intelligence (AI) based on IoT sensors has been widely used, which has increased the risk of attacks targeting AI. Adversarial examples are among the most serious types of attacks in which the attacker designs inputs that can cause the machine learning system to generate incorrect outputs. Considering the architecture using multiple sensor devices, hacking even a few sensors can create a significant risk; an attacker can attack the machine learning model through the hacked sensors. Some studies demonstrated the possibility of adversarial examples on the deep neural network (DNN) model based on IoT sensors, but it was assumed that an attacker must access all features. The impact of hacking only a few sensors has not been discussed thus far. Therefore, in this study, we discuss the possibility of attacks on DNN models by hacking only a small number of sensors. In this scenario, the attacker first hacks few sensors in the system, obtains the values of the hacked sensors, and changes them to manipulate the system, but the attacker cannot obtain and change the values of the other sensors. We perform experiments using the human activity recognition model with three sensor devices attached to the chest, wrist, and ankle of a user, and demonstrate that attacks are possible by hacking a small number of sensors.


Subject(s)
Artificial Intelligence , Deep Learning , Humans , Neural Networks, Computer , Machine Learning , Human Activities
SELECTION OF CITATIONS
SEARCH DETAIL