Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 5(7): eaau1632, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31309138

ABSTRACT

We report a device that provides coherent emission of phonon polaritons, a mixed state between photons and optical phonons in an ionic crystal. An electrically pumped GaInAs/AlInAs quantum cascade structure provides intersubband gain into the polariton mode at λ = 26.3 µm, allowing self-oscillations close to the longitudinal optical phonon energy of AlAs. Because of the large computed phonon fraction of the polariton of 65%, the emission appears directly on a Raman spectrum measurement, exhibiting a Stokes and anti-Stokes component with the expected shift of 48 meV.

2.
ACS Photonics ; 4(4): 957-962, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28470028

ABSTRACT

We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction. A structure based on a three-well optical phonon depletion scheme was optimized for this bias direction. Depending on the sheet doping density, the performance of this structure shows a trade-off between high maximum operating temperature and high output power. While the highest operating temperature of 155 K is observed for a moderate sheet doping density of 2 × 1010 cm-2, the highest peak output power of 151 mW is found for 7.3 × 1010 cm-2. Furthermore, by abutting a hyperhemispherical GaAs lens to a device with the highest doping level a record output power of 587 mW is achieved for double-metal waveguide structures.

3.
Opt Lett ; 41(19): 4590-4592, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27749888

ABSTRACT

2×2 parallel fed and 3×3 serial fed patch antenna arrays on a benzocyclobutene (BCB) polymer layer are integrated with a 70 µm wide, dry etched, double metal waveguide quantum cascade laser, operating at about 1.9 THz. The BCB surrounds the quantum cascade laser ridge and is planarized to fit precisely its height. The patch antenna arrays emit a linearly polarized, highly symmetric beam perpendicular to the antenna plane. The beams have a FWHM angle of 49° (2×2) and 35° (3×3). Both measurements and simulations indicate coupling factors to a Gaussian beam of over 90%. The antenna design is strongly governed by the high thickness (h=13.6 µm) and the low dielectric constant (ϵr=2.45) of the BCB substrate. Because the patch array has a very low input reflectivity of -13 to -20 dB over the 1.7-2.1 THz operation band, the laser needs a partially transmitting reflector to maintain the Q-factor of the active medium resonator to assure lasing in the antennas operation band. By changing the dimensions of the reflector, the facet transparency can be designed in a wide range from fully transmissive to highly reflective.

4.
Nat Commun ; 3: 661, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22314357

ABSTRACT

Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.


Subject(s)
Arsenicals/chemistry , Gallium/chemistry , Quantum Dots , Electricity , Electronics , Light , Nanotechnology/methods , Oscillometry/methods , Photons , Physics/methods , Scattering, Radiation , Semiconductors , Spectrophotometry/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL