Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 64(4): 1200-1209, 2017 Aug.
Article in English | MEDLINE | ID: mdl-26961676

ABSTRACT

The European Union Council Directive 2006/88/EC requires that risk-based surveillance (RBS) for listed aquatic animal diseases is applied to all aquaculture production businesses. The principle behind this is the efficient use of resources directed towards high-risk farm categories, animal types and geographic areas. To achieve this requirement, fish and shellfish farms must be ranked according to their risk of disease introduction and spread. We present a method to risk rank shellfish farming areas based on the risk of disease introduction and spread and demonstrate how the approach was applied in 45 shellfish farming areas in England and Wales. Ten parameters were used to inform the risk model, which were grouped into four risk themes based on related pathways for transmission of pathogens: (i) live animal movement, (ii) transmission via water, (iii) short distance mechanical spread (birds) and (iv) long distance mechanical spread (vessels). Weights (informed by expert knowledge) were applied both to individual parameters and to risk themes for introduction and spread to reflect their relative importance. A spreadsheet model was developed to determine quantitative scores for the risk of pathogen introduction and risk of pathogen spread for each shellfish farming area. These scores were used to independently rank areas for risk of introduction and for risk of spread. Thresholds were set to establish risk categories (low, medium and high) for introduction and spread based on risk scores. Risk categories for introduction and spread for each area were combined to provide overall risk categories to inform a risk-based surveillance programme directed at the area level. Applying the combined risk category designation framework for risk of introduction and spread suggested by European Commission guidance for risk-based surveillance, 4, 10 and 31 areas were classified as high, medium and low risk, respectively.


Subject(s)
Animal Diseases/transmission , Aquaculture/methods , Risk Assessment/methods , Shellfish , Animals , England , Models, Theoretical , Wales
2.
Transbound Emerg Dis ; 61(3): 247-57, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23095349

ABSTRACT

A qualitative import risk assessment was undertaken to assess the likelihood of introduction and establishment of viral haemorrhagic septicaemia virus (VHSV) genotype 1a in England and Wales (E&W), via the processing of imported rainbow trout (Oncorhynchus mykiss) carcasses from continental Europe. The likelihood was estimated for one import from an infected farm. Four main routes by which susceptible populations could be exposed to VHSV via processing waste were considered: (i) run-off from solid waste to watercourses, (ii) contamination of birds or rodents with VHSV by scavenging solid waste, (iii) discharge of liquid waste to mains drainage, and (iv) discharge of liquid waste directly to watercourses. Data on the biophysical characteristics of VHSV, its epidemiology, fish processing practices and waste management were collected. Likelihoods for each step of the four pathways were estimated. Pathway 4 (discharge of liquid waste to a watercourse) was judged as the most likely to result in infection of susceptible individuals. Levels of virus entering the aquatic environment via pathways 1-3 were judged to be many times lower than pathway 4 due mainly to the treatment of solid waste (pathways 1 and 2) and high levels of dilution (pathways 1, 2 and 3). Thirty-four trout farms process fish, of which seven have imported carcasses for processing. Compared with other processing facilities, on-farm processing results in a higher likelihood of VHSV exposure and establishment via all four pathways. Data availability was an issue; the analysis was particularly constrained by a lack of data on the prevalence of VHSV in Europe, volume of trade of carcasses into the UK and processing practices in E&W. It was concluded that the threat of VHSV introduction into E&W could be reduced by treatment of liquid effluent from processing plants and by sourcing carcasses for on-farm processing only from approved VHSV free areas.


Subject(s)
Food-Processing Industry , Hemorrhagic Septicemia, Viral/epidemiology , Hemorrhagic Septicemia, Viral/transmission , Novirhabdovirus/genetics , Oncorhynchus mykiss/virology , Water Microbiology , Animals , Commerce , England/epidemiology , Genotype , Internationality , Likelihood Functions , Prevalence , Risk Assessment/methods , Wales/epidemiology , Waste Disposal, Fluid/methods , Waste Products/adverse effects
3.
Prev Vet Med ; 111(1-2): 156-64, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23597621

ABSTRACT

Spring viraemia of carp (SVC) is a disease of international importance that predominantly affects cyprinid fish and can cause significant mortality. In the United Kingdom (UK), SVC was first detected in 1977 with further cases occurring in fisheries, farms, wholesale and retail establishments throughout England and Wales (but not Scotland, where few cyprinid populations exist, nor Northern Ireland where SVC has never been detected) over the subsequent 30 years. Following a control and eradication programme for the disease initiated in 2005, the UK was recognised free of the disease in 2010. This study compiles historic records of SVC cases in England and Wales with a view to understanding its routes of introduction and spread, and assessing the effectiveness of the control and eradication programme in order to improve contingency plans to prevent and control future disease incursions in the cyprinid fish sectors. Between 1977 and 2010 the presence of SVC was confirmed on 108 occasions, with 65 of the cases occurring in sport fisheries and the majority of the remainder occurring in the ornamental fish sector. The study found that throughout the history of SVC in the UK, though cases were widely distributed, their occurrence was sporadic and the virus did not become endemic. All evidence indicates that SVC was not able to persist under UK environmental conditions, suggesting that the majority of cases were a result of new introductions to the UK as opposed to within-country spread. The control and eradication programme adopted in 2005 was highly effective and two years after its implementation cases of SVC ceased. Given the non-persistent nature of the pathogen the most important aspect of the control programme focused on preventing re-introduction of the virus to the UK. Despite the effectiveness of these controls against SVC, this approach is likely to be less effective against more persistent pathogens such as koi herpesvirus, which are likely to require more stringent measures to prevent within-country spread.


Subject(s)
Cyprinidae , Fish Diseases/prevention & control , Rhabdoviridae Infections/veterinary , Vesiculovirus/physiology , Animal Distribution , Animals , Aquaculture , Commerce , Cyprinidae/physiology , Fish Diseases/transmission , Fish Diseases/virology , Fisheries , Introduced Species , Molecular Epidemiology , Retrospective Studies , Rhabdoviridae Infections/prevention & control , Rhabdoviridae Infections/transmission , Rhabdoviridae Infections/virology , Seasons , United Kingdom , Vesiculovirus/isolation & purification
4.
Prev Vet Med ; 102(4): 329-40, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21872950

ABSTRACT

A semi-quantitative model is presented to rank freshwater rainbow trout farms within a country or region with regards to the risk of becoming infected and spreading a specified pathogen. The model was developed to support a risk-based surveillance scheme for notifiable salmonid pathogens. Routes of pathogen introduction and spread were identified through a process of expert consultation in a series of workshops. The routes were combined into themes (e.g. exposure via water, mechanical transmission). Themes were weighted based on expert opinion. Risk factors for each route were scored and combined into a theme score which was adjusted by the weight. The number of sources and consignments were used to assess introduction via live fish movements onto the farm. Biosecurity measures were scored to assess introduction on fomites. Upstream farms, wild fish and processing plants were included in assessing the likelihood of introduction by water. The scores for each theme were combined to give separate risk scores for introduction and spread. A matrix was used to combine these to give an overall risk score. A case study for viral haemorrhagic septicaemia is presented. Nine farms that represent a range of farming practices of rainbow trout farms in England and Wales are used as worked examples of the model. The model is suited to risk rank freshwater salmonid farms which are declared free of the pathogen(s) under consideration. The score allocated to a farm does not equate to a quantitative probability estimate of the farm to become infected or spread infection. Nevertheless, the method provides a transparent approach to ranking farms with regards to pathogen transmission risks. The output of the model at a regional or national level allows the allocation of surveillance effort to be risk based. It also provides fish farms with information on how they can reduce their risk score by improving biosecurity. The framework of the model can be applied to different production systems which may have other routes of disease spread. Further work is recommended to validate the allocated scores. Expert opinion was obtained through workshops, where the outputs from groups were single point estimates for relative weights of risks. More formal expert opinion elicitation methods could be used to capture variation in the experts' estimates and uncertainty and would provide data on which to simulate the model stochastically. The model can be downloaded (in Microsoft(®)-Excel format) from the Internet at: http://www.cefas.defra.gov.uk/6701.aspx.


Subject(s)
Fish Diseases/epidemiology , Fish Diseases/transmission , Models, Biological , Risk Assessment/methods , Animals , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Eggs/microbiology , England , Environmental Exposure/adverse effects , Fish Diseases/microbiology , Fish Diseases/prevention & control , Fisheries , Fresh Water , Hemorrhagic Septicemia, Viral/epidemiology , Hemorrhagic Septicemia, Viral/prevention & control , Hemorrhagic Septicemia, Viral/transmission , Oncorhynchus mykiss , Probability , Risk Factors , Wales
5.
Transbound Emerg Dis ; 57(5): 293-304, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20561287

ABSTRACT

A risk framework has been developed to examine the influence of climate change on disease emergence in the United Kingdom. The fish immune response and the replication of pathogens are often correlated with water temperature, which manifest as temperature ranges for infection and clinical diseases. These data are reviewed for the major endemic and exotic disease threats to freshwater fish. Increasing water temperatures will shift the balance in favour of either the host or pathogen, changing the frequency and distribution of disease. A number of endemic diseases of salmonids (e.g. enteric red mouth, furunculosis, proliferative kidney disease and white spot) will become more prevalent and difficult to control as water temperatures increase. Outbreaks of koi herpesvirus in carp fisheries are likely to occur over a longer period each summer. Climate change also alters the threat level associated with exotic pathogens. The risk of viral haemorrhagic septicaemia (VHSV), infectious haematopoietic necrosis virus (IHNV) and spring viraemia of carp virus (SVCV) declines as infection generally only establishes when water temperatures are less than 14°C for VHSV and IHNV and 17°C for SCVC. The risk of establishment of other exotic pathogens (epizootic haematopoietic necrosis and epizootic ulcerative syndrome) increases. The spread of Lactococcus garvieae northwards in Europe is likely to continue, and thus is more likely to be both introduced and become established. Measures to reduce the threat of exotic pathogens need to be revised to account for the changing exotic diseases threat. Increasing water temperatures and the negative effects of extreme weather events (e.g. storms) are likely to alter the freshwater environment adversely for both wild and farmed salmonid populations, increasing their susceptibility to disease and the likelihood of disease emergence. For wild populations, surveillance and risk mitigation need to be focused on locations where disease emergence, as a result of climate change, is most likely.


Subject(s)
Climate Change , Communicable Diseases, Emerging/veterinary , Ecosystem , Fish Diseases/epidemiology , Fresh Water , Animals , Communicable Diseases, Emerging/epidemiology , Fishes , Risk Assessment , United Kingdom/epidemiology
6.
Dis Aquat Organ ; 79(1): 47-56, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18429441

ABSTRACT

This paper describes an approach to demonstrate freedom of individual rainbow trout farms from Gyrodactylus salaris Malmberg, 1957. The infection status of individual farms is relevant should G. salaris be introduced into a country or zone previously known to be free of the parasite. Trade from farms where G. salaris may have been introduced would be restricted until freedom had been demonstrated. Cage, fish and parasite sample sizes were calculated based on the minimum detectable prevalence (P*), test characteristics, population size, and Type I and II errors. Between 5 and 23 cages per farm would need to be sampled to demonstrate freedom at a cage level P* of 10%. The number of fish sampled per cage depended mainly on the test sensitivity (probability of correctly identifying an infected fish). Assuming a test sensitivity of 99% at the fish level, 59 fish per cage are needed (P* = 5%). Since G. salaris may exist in mixed infection with G. derjavini, testing a sample of gyrodactylid parasites may not result in the parasite being detected when present. Test sensitivity at the fish level depends on the number of gyrodactylids on the fish, the proportion of which are G. salaris and the number examined. Assuming a P* of 5% (i.e. G. salaris are at least 5% of the gyrodactylid population), between 20 and 73 parasites per fish would need to be sampled (depending on abundance) to maintain the Type I error at 0.01 (thus a fish level test sensitivity of 99%). This work identifies the critical information, and further research, needed to assess freedom from G. salaris with a known level of confidence; this is essential to provide a sound scientific basis for decision-making about disease control measures.


Subject(s)
Fish Diseases/diagnosis , Fisheries , Oncorhynchus mykiss , Trematoda/isolation & purification , Trematode Infections/veterinary , Animals , Fish Diseases/parasitology , Fisheries/statistics & numerical data , Population Density , Sensitivity and Specificity , Trematode Infections/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...