Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cartilage ; : 19476035241247659, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726690

ABSTRACT

OBJECTIVE: Hyaluronic acid (HA) in synovial fluid (SF) contributes to boundary lubrication with altered levels in osteoarthritis (OA) and rheumatoid arthritis (RA). SF extracellular vesicles (EVs) may participate in arthritis by affecting inflammation and cartilage degradation. It remains unknown whether HA and EVs display joint-specific alterations in arthritic SFs. DESIGN: We investigated the numbers and characteristics of HA-particles and large EVs in SF from knees and shoulders of 8 OA and 8 RA patients and 8 trauma controls, and in plasma from 10 healthy controls and 11 knee OA patients. The plasma and SF HA concentrations were determined with a sandwich-type enzyme-linked sorbent assay, and EVs and HA-particles were characterized from plasma and unprocessed and centrifuged SFs with confocal microscopy. The data were compared according to diagnosis, location, and preanalytical processing. RESULTS: The main findings were: (1) OA and RA SFs can be distinguished from trauma joints based on the distinctive profiles of HA-particles and large EVs, (2) there are differences in the SF HA and EV characteristics between shoulder and knee joints that could reflect their dissimilar mobility, weight-bearing, and shock absorption properties, (3) EV counts in SF and plasma can positively associate with pain parameters independent of age and body adiposity, and (4) low-speed centrifugation causes alterations in the features of HA-particles and EVs, complicating their examination in the original state. CONCLUSIONS: Arthritis and anatomical location can affect the characteristics of HA-particles and large EVs that may have potential as biomarkers and effectors in joint degradation and pain.

2.
Cancers (Basel) ; 16(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339385

ABSTRACT

Tumor-associated macrophages (TAMs) are associated with a poor outcome in breast cancer (BC), but their prognostic value in different BC subtypes has remained somewhat unclear. Here, we investigated the prognostic value of M2-like TAMs (CD163+) and all TAMs (CD68+) in a patient cohort of 278 non-metastatic BC patients, half of whom were HER2+ (n = 139). The survival endpoints investigated were overall survival (OS), breast cancer-specific survival (BCSS) and disease-free survival (DFS). In the whole patient cohort (n = 278), a high CD163+ TAM count and a high CD68+ TAM count were associated with a worse outcome (p ≤ 0.023). In HER2+ BC, a high CD163+ TAM count was an independent factor for a poor prognosis across all the investigated survival endpoints (p < 0.001). The prognostic effect was evident in both the HER2+/hormone receptor-positive (p < 0.001) and HER2+/hormone receptor-negative (p ≤ 0.012) subgroups and regardless of the provision of adjuvant trastuzumab (p ≤ 0.002). In HER2-negative BC, the CD163+ TAM count was not significantly associated with survival. These results suggest that a high CD163+ TAM count predicts an inferior outcome, especially in HER2+ BC patients, and as adjuvant trastuzumab did not overcome the poor prognostic effect, combination treatments including therapies targeting the macrophage function could represent an effective therapeutic approach in HER2+ BC.

3.
Sci Rep ; 12(1): 17550, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266410

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease with inadequately understood pathogenesis leading to pain and functional limitations. Extracellular vesicles (EVs) released by synovial joint cells can induce both pro- and anti-OA effects. Hyaluronic acid (HA) lubricates the surfaces of articular cartilage and is one of the bioactive molecules transported by EVs. In humans, altered EV counts and composition can be observed in OA synovial fluid (SF), while EV research is in early stages in the horse-a well-recognized OA model. The aim was to characterize SF EVs and their HA cargo in 19 horses. SF was collected after euthanasia from control, OA, and contralateral metacarpophalangeal joints. The SF HA concentrations and size distribution were determined with a sandwich-type enzyme-linked sorbent assay and size-exclusion chromatography. Ultracentrifugation followed by nanoparticle tracking analysis (NTA) were utilized to quantify small EVs, while confocal laser scanning microscopy (CLSM) and image analysis characterized larger EVs. The number and size distribution of small EVs measured by NTA were unaffected by OA, but these results may be limited by the lack of hyaluronidase pre-treatment of the samples. When visualized by CLSM, the number and proportion of larger HA-containing EVs (HA-EVs) decreased in OA SF (generalized linear model, count: p = 0.024, %: p = 0.028). There was an inverse association between the OA grade and total EV count, HA-EV count, and HA-EV % (rs = - 0.264 to - 0.327, p = 0.012-0.045). The total HA concentrations were also lower in OA (generalized linear model, p = 0.002). To conclude, the present study discovered a potential SF biomarker (HA-EVs) for naturally occurring equine OA. The roles of HA-EVs in the pathogenesis of OA and their potential as a joint disease biomarker and therapeutic target warrant future studies.


Subject(s)
Cartilage, Articular , Extracellular Vesicles , Osteoarthritis , Animals , Biomarkers , Cartilage, Articular/pathology , Extracellular Vesicles/pathology , Horses , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase , Osteoarthritis/veterinary , Osteoarthritis/pathology
4.
Front Vet Sci ; 9: 894189, 2022.
Article in English | MEDLINE | ID: mdl-35799843

ABSTRACT

Extracellular vesicles (EVs) are membrane-bound particles that engage in inflammatory reactions by mediating cell-cell interactions. Previously, EVs have been isolated from the bronchoalveolar lavage fluid (BALF) of humans and rodents. The aim of this study was to investigate the number and size distribution of EVs in the BALF of asthmatic horses (EA, n = 35) and healthy horses (n = 19). Saline was injected during bronchoscopy to the right lung followed by manual aspiration. The retrieved BALF was centrifuged twice to remove cells and biological debris. The supernatant was concentrated and EVs were isolated using size-exclusion chromatography. Sample fractions were measured with nanoparticle tracking analysis (NTA) for particle number and size, and transmission electron microscopy and confocal laser scanning microscopy were used to visualize EVs. The described method was able to isolate and preserve EVs. The mean EV size was 247 ± 35 nm (SD) in the EA horses and 261 ± 47 nm in the controls by NTA. The mean concentration of EVs was 1.38 × 1012 ± 1.42 × 1012 particles/mL in the EA horses and 1.33 × 1012 ± 1.07 × 1012 particles/mL in the controls with no statistically significant differences between the groups. With Western blotting and microscopy, these particles were documented to associate with EV protein markers (CD63, TSG101, HSP70, EMMPRIN, and actin) and hyaluronan. Equine BALF is rich in EVs of various sizes, and the described protocol is usable for isolating EVs. In the future, the role of EVs can be studied in horses with airway inflammation.

5.
J Invest Dermatol ; 142(11): 3041-3051.e10, 2022 11.
Article in English | MEDLINE | ID: mdl-35580697

ABSTRACT

The tumor microenvironment, with distinctive cell types and a complex extracellular matrix has a tremendous impact on cancer progression. In this study, we investigated the effects of proinflammatory (M1) and immunosuppressive (M2) macrophages on hyaluronan (HA) matrix formation and inflammatory response in melanoma cells. Proinflammatory factors secreted from M1 macrophages stimulated the formation of a thick pericellular HA matrix in melanoma cells due to upregulation of HA synthase 2 (HAS2). HAS2 silencing reversed the effect of M1 conditioned medium on pericellular HA coat formation, and interestingly, it also partly downregulated the M1 conditioned medium‒induced upregulation of inflammation-related genes (IL1ß, IL6), as did the inhibitors for TNFR and IKKγ. Gene set enrichment analysis revealed that genes related to inflammatory responses and TNF-α signaling via NF-κB are enriched in the M1 conditioned medium‒treated melanoma cells. Moreover, the expression of matrix metalloproteinase 9 and three-dimensional cell invasion were induced in these cells, whereas M2 macrophages had no effect on HA synthesis, inflammatory response, or invasion. Our results indicate that the activation of TNFR-NF-κB signaling in M1 conditioned medium‒treated cells leads to HAS2 upregulation, which associates with a protumor inflammatory and invasive phenotype of melanoma cells.


Subject(s)
Melanoma , NF-kappa B , Humans , NF-kappa B/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hyaluronic Acid/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Inflammation/pathology , Melanoma/pathology , Tumor Microenvironment
6.
Front Oncol ; 12: 869417, 2022.
Article in English | MEDLINE | ID: mdl-35574334

ABSTRACT

Invasion of tumor cells through the stroma is coordinated in response to migratory cues provided by the extracellular environment. One of the most abundant molecules in the tumor microenvironment is hyaluronan, a glycosaminoglycan known to promote many hallmarks of tumor progression, including the migratory potential of tumor cells. Strikingly, hyaluronan is also often found to coat extracellular vesicles (EVs) that originate from plasma membrane tentacles of tumor cells crucial for migration, such as filopodia, and are abundant in tumor niches. Thus, it is possible that hyaluronan and hyaluronan-coated EVs have a cooperative role in promoting migration. In this work, we compared the hyaluronan synthesis, EV secretion and migratory behavior of normal and aggressive breast cell lines from MCF10 series. Single live cell confocal imaging, electron microscopy and correlative light and electron microscopy experiments revealed that migrating tumor cells form EV-rich and hyaluronan -coated trails. These trails promote the pathfinding behavior of follower cells, which is dependent on hyaluronan. Specifically, we demonstrated that plasma membrane protrusions and EVs left behind by tumor cells during migration are strongly positive for CD9. Single cell tracking demonstrated a leader-follower behavior, which was significantly decreased upon removal of pericellular hyaluronan, indicating that hyaluronan promotes the pathfinding behavior of follower cells. Chick chorioallantoic membrane assays in ovo suggest that tumor cells behave similarly in 3D conditions. This study strengthens the important role of extracellular matrix production and architecture in coordinated tumor cell movements and validates the role of EVs as important components and regulators of tumor matrix. The results suggest that tumor cells can modify the extracellular niche by forming trails, which they subsequently follow coordinatively. Future studies will clarify in more detail the orchestrated role of hyaluronan, EVs and other extracellular cues in coordinated migration and pathfinding behavior of follower cells.

7.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628422

ABSTRACT

Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator precursors. Fibroblast-like synoviocytes (FLSs) secrete EVs that transport hyaluronic acid (HA). FLSs play a central role in inflammation, pannus formation, and cartilage degradation in joint diseases, and EVs have recently emerged as potential mediators of these effects. The aim of the present study was to follow temporal changes in HA and EV secretion by normal FLSs, and to characterize the FA profiles of FLSs and EVs during proliferation. The methods used included nanoparticle tracking analysis, confocal laser scanning microscopy, sandwich-type enzyme-linked sorbent assay, quantitative PCR, and gas chromatography. The expression of hyaluronan synthases 1-3 in FLSs and HA concentrations in conditioned media decreased during cell proliferation. This was associated with elevated proportions of 20:4n-6 and total n-6 polyunsaturated FAs (PUFAs) in high-density cells, reductions in n-3/n-6 PUFA ratios, and up-regulation of cluster of differentiation 44, tumor necrosis factor α, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ. Compared to the parent FLSs, 16:0, 18:0, and 18:1n-9 were enriched in the EV fraction. EV counts decreased during cell growth, and 18:2n-6 in EVs correlated with the cell count. To conclude, FLS proliferation was featured by increased 20:4n-6 proportions and reduced n-3/n-6 PUFA ratios, and FAs with a low degree of unsaturation were selectively transferred from FLSs into EVs. These FA modifications have the potential to affect membrane fluidity, biosynthesis of lipid mediators, and inflammatory processes in joints, and could eventually provide tools for translational studies to counteract cartilage degradation in inflammatory joint diseases.


Subject(s)
Extracellular Vesicles , Synoviocytes , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Fibroblasts/metabolism , Humans , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/metabolism , PPAR gamma/metabolism , Synoviocytes/metabolism
8.
BMC Musculoskelet Disord ; 22(1): 247, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33676459

ABSTRACT

BACKGROUND: Hyaluronic acid (HA) is the major extracellular matrix glycosaminoglycan with a reduced synovial fluid (SF) concentration in arthropathies. Cell-derived extracellular vesicles (EV) have also been proposed to contribute to pathogenesis in joint diseases. It has recently been shown that human SF contains HA-coated EV (HA-EV), but their concentration and function in joint pathologies remain unknown. METHODS: The aim of the present study was to develop an applicable method based on confocal laser scanning microscopy (CLSM) and image analysis for the quantification of EV, HA-particles, and HA-EV in the SF of the human knee joint. Samples were collected during total knee replacement surgery from patients with end-stage rheumatoid arthritis (RA, n = 8) and osteoarthritis (OA, n = 8), or during diagnostic/therapeutic arthroscopy unrelated to OA/RA (control, n = 7). To characterize and quantify EV, HA-particles, and HA-EV, SF was double-stained with plasma membrane and HA probes and visualized by CLSM. Comparisons between the patient groups were performed with the Kruskal-Wallis analysis of variance. RESULTS: The size distribution of EV and HA-particles was mostly similar in the study groups. Approximately 66% of EV fluorescence was co-localized with HA verifying that a significant proportion of EV carry HA. The study groups were clearly separated by the discriminant analysis based on the CLSM data. The intensities of EV and HA-particle fluorescences were lower in the RA than in the control and OA groups. CONCLUSIONS: CLSM analysis offers a useful tool to assess HA-EV in SF samples. The altered EV and HA intensities in the RA SF could have possible implications for diagnostics and therapy.


Subject(s)
Arthritis, Rheumatoid , Extracellular Vesicles , Osteoarthritis , Arthritis, Rheumatoid/diagnosis , Humans , Hyaluronic Acid , Synovial Fluid
9.
Breast Cancer Res Treat ; 185(1): 63-72, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32948994

ABSTRACT

PURPOSE: The aim of this study was to investigate the prognostic impact of two systemic inflammatory markers, the neutrophil-to-lymphocyte ratio (NLR) and the monocyte-to-lymphocyte ratio (MLR), and their possible predictive role regarding the efficacy of adjuvant trastuzumab, in 209 early breast cancer cases, 107 of which were HER2-positive. METHODS: Baseline NLR and MLR values were divided into two groups, high and low, according to cut-off-points determined from the ROC curve (2.2 for NLR and 0.22 for MLR). Cox's model was utilized for survival analyses. RESULTS: High NLR and MLR correlated with poor overall survival (OS) and breast cancer specific survival (BCSS) among all the patients (p ≤ 0.030). Among the HER2+ patients whose adjuvant treatment did not include trastuzumab (n = 64), the survival rates were remarkably lower in patients with a high NLR as compared to those with low; 31% vs. 71% for OS and 42% vs. 74% for BCSS (p ≤ 0.014). Similarly, high MLR correlated with poor survival among these patients (p ≤ 0.020). On the contrary, among the patients who had received adjuvant trastuzumab (n = 43), NLR or MLR did not correlate with survival. Furthermore, trastuzumab was beneficial for the HER2+ patients with high NLR/MLR, while the survival of the HER2+ patients with low NLR/MLR was good irrespective if they received adjuvant trastuzumab. CONCLUSIONS: Our results suggest that trastuzumab modulates the systemic inflammatory conditions and overcomes the poor prognostic impact of high NLR/MLR. This finding may also provide a rationale for combining trastuzumab with immuno-oncological treatments in HER2+ breast cancer.


Subject(s)
Breast Neoplasms , Neutrophils , Breast Neoplasms/drug therapy , Female , Humans , Lymphocytes , Monocytes , Prognosis , Retrospective Studies
10.
Cancers (Basel) ; 12(7)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679746

ABSTRACT

Filopodia are multifunctional finger-like plasma membrane protrusions with bundles of actin filaments that exist in virtually all cell types. It has been known for some time that hyaluronan synthesis activity induces filopodial growth. However, because of technical challenges in the studies of these slender and fragile structures, no quantitative analyses have been performed so far to indicate their association with hyaluronan synthesis. In this work we comprehensively address the direct quantification of filopodial traits, covering for the first time length and density measurements in a series of human cancer cell lines with variable levels of hyaluronan synthesis. The synthesis and plasma membrane binding of hyaluronan were manipulated with hyaluronan synthase 3 (HAS3) and hyaluronan receptor CD44 overexpression, and treatments with mannose, 4-methylumbelliferone (4-MU), and glucosamine. The results of this work show that the growth of filopodia was associated with the levels of hyaluronan synthesis but was not dependent on CD44 expression. The results confirm the hypothesis that abundance and length of filopodia in cancer cells is associated with the activity of hyaluronan synthesis.

11.
Eur Radiol ; 30(1): 38-46, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31359124

ABSTRACT

OBJECTIVES: We aimed to evaluate the differences in peritumoral apparent diffusion coefficient (ADC) values by four different ROI selection methods and to validate the optimal method. Furthermore, we aimed to evaluate if the peritumor-tumor ADC ratios are correlated with axillary lymph node positivity and hyaluronan accumulation. METHODS: Altogether, 22 breast cancer patients underwent 3.0-T breast MRI, histopathological evaluation, and hyaluronan assay. Paired t and Friedman tests were used to compare minimum, mean, and maximum values of tumoral and peritumoral ADC by four methods: (M1) band ROI, (M2) whole tumor surrounding ROI, (M3) clockwise multiple ROI, and (M4) visual assessment of ROI selection. Subsequently, peritumor/tumor ADC ratios were compared with hyaluronan levels and axillary lymph node status by the Mann-Whitney U test. RESULTS: No statistically significant differences were found among the four ROI selection methods regarding minimum, mean, or maximum values of tumoral and peritumoral ADC. Visual assessment ROI measurements represented the less time-consuming evaluation method for the peritumoral area, and with sufficient accuracy. Peritumor/tumor ADC ratios obtained by all methods except the clockwise ROI (M3) showed a positive correlation with hyaluronan content (M1, p = 0.004; M2, p = 0.012; M3, p = 0.20; M4, p = 0.025) and lymph node metastasis (M1, p = 0.001; M2, p = 0.007; M3, p = 0.22; M4, p = 0.015), which are established factors for unfavorable prognosis. CONCLUSIONS: Our results suggest that the peritumor/tumor ADC ratio could be a readily applicable imaging index associated with axillary lymph node metastasis and extensive hyaluronan accumulation. It could be related to the biological aggressiveness of breast cancer and therefore might serve as an additional prognostic factor. KEY POINTS: • Out of four different ROI selection methods for peritumoral ADC evaluation, measurements based on visual assessment provided sufficient accuracy and were the less time-consuming method. • The peritumor/tumor ADC ratio can provide an easily applicable supplementary imaging index for breast cancer assessment. • A higher peritumor/tumor ADC ratio was associated with axillary lymph node metastasis and extensive hyaluronan accumulation and might serve as an additional prognostic factor.


Subject(s)
Breast Neoplasms/pathology , Hyaluronic Acid/metabolism , Adult , Aged , Axilla/pathology , Breast/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Lymph Nodes/pathology , Lymphatic Metastasis , Magnetic Resonance Imaging , Middle Aged , Prognosis , Prospective Studies
12.
J Investig Med ; 68(2): 383-391, 2020 02.
Article in English | MEDLINE | ID: mdl-31672719

ABSTRACT

Metformin is the first-line drug in the treatment of type 2 diabetes worldwide based on its effectiveness and cardiovascular safety. Currently metformin is increasingly used during pregnancy in women with gestational diabetes mellitus, even if the long-term effects of metformin on offspring are not exactly known. We have previously shown that high glucose concentration increases hyaluronan (HA) production of cultured human vascular smooth muscle cells (VSMC) via stimulating the expression of hyaluronan synthase 2 (HAS2). This offers a potential mechanism whereby hyperglycemia leads to vascular macroangiopathy. In this study, we examined whether gestational metformin use affects HA content in the aortic wall of mouse offspring in vivo. We also examined the effect of metformin on HA synthesis by cultured human VSMCs in vitro. We found that gestational metformin use significantly decreased HA content in the intima-media of mouse offspring aortas. In accordance with this, the synthesis of HA by VSMCs was also significantly decreased in response to treatment with metformin. This decrease in HA synthesis was shown to be due to the reduction of both the expression of HAS2 and the amount of HAS substrates, particularly UDP-N-acetylglucosamine. As shown here, gestational metformin use is capable to program reduced HA content in the vascular wall of the offspring strongly supporting the idea, that metformin possesses long-term vasculoprotective effects.


Subject(s)
Hyaluronic Acid/antagonists & inhibitors , Hyaluronic Acid/biosynthesis , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Infant, Newborn , Male , Mice , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Pregnancy
13.
Cell Mol Life Sci ; 77(20): 4093-4115, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31820036

ABSTRACT

Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Subject(s)
Extracellular Vesicles/genetics , Hedgehog Proteins/genetics , Hyaluronan Synthases/genetics , Melanoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Up-Regulation/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Hyaluronan Receptors/genetics , Signal Transduction/genetics
14.
Breast Cancer Res Treat ; 179(3): 565-575, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31720917

ABSTRACT

PURPOSE: Tumor microenvironment, including inflammatory cells, adipocytes and extracellular matrix constituents such as hyaluronan (HA), impacts on cancer progression. Systemic metabolism also influences tumor growth e.g. obesity and type 2 diabetes (T2D) are risk factors for breast cancer. Here, in 262 breast cancer cases, we explored the combined impacts on survival of M2-like tumor associated macrophages (TAMs), the abundance of breast fat visualized as low density in mammograms, and tumor HA, and their associations with T2D. METHODS: Mammographic densities were assessed visually from the diagnostic images and dichotomized into very low density (VLD, density ≤ 10%, "fatty breast") and mixed density (MID, density > 10%). The amounts of TAMs (CD163+ and CD68+) and tumor HA were determined by immunohistochemistry. The data of T2D was collected from the patient records. Statistical differences between the parameters were calculated with Chi square or Mann-Whitney test and survival analyses with Cox's model. RESULTS: A combination of fatty breasts (VLD), abundance of M2-like TAMs (CD163+) and tumor HA associated with poor survival, as survival was 88-89% in the absence of these factors but only 40-47% when all three factors were present (p < 0.001). Also, an association between T2D and fatty breasts was found (p < 0.01). Furthermore, tumors in fatty breasts contained more frequently high levels of M2-like TAMs than tumors in MID breasts (p = 0.01). CONCLUSIONS: Our results demonstrate a dramatic effect of the tumor microenvironment on breast cancer progression. We hypothesize that T2D as well as obesity increase the fat content of the breasts, subsequently enhancing local pro-tumoral inflammation.


Subject(s)
Adipose Tissue/physiology , Breast Density/physiology , Breast Neoplasms/pathology , Hyaluronic Acid/metabolism , Macrophages/immunology , Tumor Microenvironment/physiology , Adipocytes/physiology , Adipose Tissue/cytology , Adult , Aged , Aged, 80 and over , Breast/cytology , Breast/pathology , Breast Neoplasms/mortality , Diabetes Mellitus, Type 2/pathology , Disease-Free Survival , Female , Humans , Middle Aged , Obesity/pathology , Retrospective Studies , Survival Analysis
15.
Cells ; 8(3)2019 03 22.
Article in English | MEDLINE | ID: mdl-30909497

ABSTRACT

CD44 is a multifunctional adhesion molecule typically upregulated in malignant, inflamed and injured tissues. Due to its ability to bind multiple ligands present in the tumor microenvironment, it promotes multiple cellular functions related to tumorigenesis. Recent data has shown that CD44 and its principal ligand hyaluronan (HA) are carried by extracellular vesicles (EV) derived from stem and tumor cells, but the role of CD44 in EV shedding has not been studied so far. To answer this question, we utilized CD44-negative human gastric carcinoma cell line MKN74 manipulated to stably express CD44 standard form (CD44s). The effect of CD44s expression on HA metabolism, EV secretion, morphology and growth of these cells was studied. Interestingly, HAS2 and HYAL2 expression levels were significantly upregulated in CD44s-expressing cells. Cell-associated HA levels were significantly increased, while HA levels in the culture medium of CD44s-positive cells was lower compared to CD44s-negative MOCK cells. CD44s expression had no significant effect on the proliferation capacity of cells, but cells showed diminished contact inhibition. Superresolution imaging revealed that CD44s and HA were accumulated on filopodia and EVs secreted from CD44s-positive cells, but no differences in total numbers of secreted EV between CD44s-negative and -positive cells was detected. In 3D cultures, CD44s-expressing cells had an enhanced invasion capacity in BME gel and increased spheroidal growth when cultured in collagen I gel. No significant differences in mitotic activity, tumor size or morphology were detected in CAM assays. However, a significant increase in HA staining coverage was detected in CD44s-positive tumors. Interestingly, CD44s-positive EVs embedded in HA-rich matrix were detected in the stromal areas of tumors. The results indicate that CD44s expression significantly increases the HA binding capacity of gastric cancer cells, while the secreted HA is downregulated. CD44s is also carried by EVs secreted by CD44s-expressing cells. These findings highlight the potential usefulness of CD44s and its ligands as multipurpose EV biomarkers, because they are upregulated in inflammatory, injured, and cancer cells and accumulate on the surface of EVs secreted in these situations.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Extracellular Vesicles/metabolism , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , Pseudopodia/metabolism , Stomach Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cell Shape , Chickens , Chorioallantoic Membrane/metabolism , Collagen/metabolism , Extracellular Vesicles/ultrastructure , Humans , Neoplasm Invasiveness , Pseudopodia/ultrastructure , Stomach Neoplasms/ultrastructure
16.
Methods Mol Biol ; 1952: 81-89, 2019.
Article in English | MEDLINE | ID: mdl-30825167

ABSTRACT

UDP-sugars are important substrates for the synthesis of various cellular glycans and glycoconjugates, many of which play essential roles in the pathobiology of diseases associated with deranged glucose metabolism, such as cancer and type 2 diabetes. Hence, their analysis from cultured cells and especially from tissue samples can give valuable information. This chapter describes a method for UDP-sugar isolation from various sources utilizing ion-pair solid-phase extraction with graphitized carbon cartridges, and their analysis using anion-exchange high-performance liquid chromatography.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Ion Exchange/methods , Solid Phase Extraction/methods , Uridine Diphosphate Sugars/analysis , Animals , Humans , Uridine Diphosphate Sugars/isolation & purification
17.
Matrix Biol ; 78-79: 147-164, 2019 05.
Article in English | MEDLINE | ID: mdl-29709595

ABSTRACT

Hyaluronan accumulates in the stroma of several solid tumors and promotes their progression. Both enhanced synthesis and fragmentation of hyaluronan are required as a part of this inflammatory process resembling wound healing. Increased expression of the genes of hyaluronan synthases (HAS1-3) are infrequent in human tumors, while posttranslational modifications that activate the HAS enzymes, and glucose shunted to the UDP-sugar substrates HASs, can have crucial contributions to tumor hyaluronan synthesis. The pericellular hyaluronan influences virtually all cell-cell and cell-matrix interactions, controlling migration, proliferation, apoptosis, epithelial to mesenchymal transition, and stem cell functions. The catabolism by hyaluronidases and free radicals appears to be as important as synthesis for the inflammation that promotes tumor growth, since the receptors mediating the signals create specific responses to hyaluronan fragments. Targeting hyaluronan metabolism shows therapeutic efficiency in animal experiments and early clinical trials.


Subject(s)
Hyaluronan Synthases/metabolism , Hyaluronic Acid/biosynthesis , Neoplasms/metabolism , Animals , Cell Communication , Cell Movement , Disease Progression , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/drug therapy , Signal Transduction , Tumor Microenvironment
18.
Biochem J ; 475(10): 1755-1772, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29626161

ABSTRACT

Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.


Subject(s)
Adenosine Triphosphate/pharmacology , Calcium/metabolism , Epidermis/enzymology , Hyaluronan Synthases/metabolism , Keratinocytes/enzymology , Mitogen-Activated Protein Kinases/metabolism , Receptors, Purinergic P2Y2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , Epidermis/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation, Enzymologic , Humans , Hyaluronan Synthases/genetics , Keratinocytes/cytology , Keratinocytes/drug effects , Mitogen-Activated Protein Kinases/genetics , Phosphorylation , Receptors, Purinergic P2Y2/genetics , Signal Transduction
19.
Matrix Biol ; 67: 63-74, 2018 04.
Article in English | MEDLINE | ID: mdl-29331336

ABSTRACT

Increased uptake of glucose, a general hallmark of malignant tumors, leads to an accumulation of intermediate metabolites of glycolysis. We investigated whether the high supply of these intermediates promotes their flow into UDP-sugars, and consequently into hyaluronan, a tumor-promoting matrix molecule. We quantified UDP-N-Acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcUA) in human breast cancer biopsies, the levels of enzymes contributing to their synthesis, and their association with the hyaluronan accumulation in the tumor. The content of UDP-GlcUA was 4 times, and that of UDP-GlcNAc 12 times higher in the tumors as compared to normal glandular tissue obtained from breast reductions. The surge of UDP-GlcNAc correlated with an elevated mRNA expression of glutamine-fructose-6-phosphate aminotransferase 2 (GFAT2), one of the key enzymes in the biosynthesis of UDP-GlcNAc, and the expression of GFAT1 was also elevated. The contents of both UDP-sugars strongly correlated with tumor hyaluronan levels. Interestingly, hyaluronan content did not correlate with the mRNA levels of the hyaluronan synthases (HAS1-3), thus emphasizing the role of the UDP-sugar substrates of these enzymes. The UDP-sugars showed a trend to higher levels in ductal vs. lobular cancer subtypes. The results reveal for the first time a dramatic increase of UDP-sugars in breast cancer, and suggest that their high supply drives the accumulation of hyaluronan, a known promoter of breast cancer and other malignancies. In general, the study shows how the disturbed glucose metabolism typical for malignant tumors can influence cancer microenvironment through UDP-sugars and hyaluronan.


Subject(s)
Breast Neoplasms/metabolism , Hyaluronic Acid/metabolism , Uridine Diphosphate Glucuronic Acid/metabolism , Uridine Diphosphate N-Acetylglucosamine/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Humans , Hyaluronan Synthases/genetics , Middle Aged , Up-Regulation , Young Adult
20.
Matrix Biol ; 64: 54-68, 2017 12.
Article in English | MEDLINE | ID: mdl-28483644

ABSTRACT

Extracellular vesicles (EVs) secreted by stem cells are potential factors mediating tissue regeneration. They travel from bone marrow stem cells into damaged tissues, suggesting that they can repair tissue injuries without directly replacing parenchymal cells. We have discovered that hyaluronan (HA) synthesis is associated with the shedding of HA-coated EVs. The aim of this study was to test whether bone marrow-derived hMSCs secrete HA-coated EVs. The EVs secreted by MSCs were isolated by differential centrifugation and characterized by nanoparticle tracking analysis. Their morphology and budding mechanisms were inspected by confocal microscopy and correlative light and electron microscopy. Hyaluronan synthesis of hMSCs was induced by lipopolysaccharide and inhibited by RNA interference and 4-methylumbelliferone. It was found that the MSCs have extremely long apical and lateral HA-coated filopodia, typical for cells with an active HA secretion. Additionally, they secreted HA-coated EVs carrying mRNAs for CD44 and all HAS isoforms. The results show that stem cells have a strong intrinsic potential for HA synthesis and EV secretion, and the amount of HA carried on EVs reflects the HA content of the original cells. These results show that the secretion of HA-coated EVs by hMSCs is a general process, that may contribute to many of the mechanisms of HA-mediated tissue regeneration. Additionally, an HA coat on EVs may regulate their interactions with target cells and participate in extracellular matrix remodeling.


Subject(s)
Extracellular Vesicles/metabolism , Hyaluronic Acid/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Humans , Hyaluronan Receptors/metabolism , Hymecromone/pharmacology , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanotechnology , Particle Size , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...