Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(12)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38132311

ABSTRACT

Tumor hypoxia is the most common feature of radioresistance to the radiotherapy (RT) of lung cancer and results in poor clinical outcomes. High-linear energy transfer (LET) radiation is a novel RT technique to overcome this problem. However, a limited number of studies have been elucidated on the underlying mechanism(s) of RIBE and RISBE in cancer cells exposed to high-LET radiation under hypoxia. Here, we developed a new method to investigate the RIBE and RISBE under hypoxia using the SPICE-QST proton microbeams and a layered tissue co-culture system. Normal lung fibroblast (WI-38) and lung cancer (A549) cells were exposed in the range of 06 Gy of proton microbeams, wherein only ~0.04-0.15% of the cells were traversed by protons. Subsequently, primary bystander A549 cells were co-cultured with secondary bystander A549 cells in the presence or absence of a GJIC and NO inhibitor using co-culture systems. Studies show that there are differences in RIBE in A549 and WI-38 primary bystander cells under normoxia and hypoxia. Interestingly, treatment with a GJIC inhibitor showed an increase in the toxicity of primary bystander WI-38 cells but a decrease in A549 cells under hypoxia. Our results also show the induction of RISBE in secondary bystander A549 cells under hypoxia, where GJIC and NO inhibitors reduced the stressful effects on secondary bystander A549 cells. Together, these preliminary results, for the first time, represented the involvement of intercellular communications through GJIC in propagation of RIBE and RISBE in hypoxic cancer cells.

2.
Biology (Basel) ; 12(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37997966

ABSTRACT

This study aimed to determine the mechanism underlying the modulation of radiosensitivity in cancer cells by the radiation-induced bystander effect (RIBE). We hypothesized that the RIBE mediates cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in elevating radioresistance in unirradiated cells. In this study, we used the SPICE-QST microbeam irradiation system to target 0.07-0.7% cells by 3.4-MeV proton microbeam in the cell culture sample, such that most cells in the dish became bystander cells. Twenty-four hours after irradiation, we observed COX-2 protein upregulation in microbeam-irradiated cells compared to that of controls. Additionally, 0.29% of the microbeam-irradiated cells exhibited increased cell survival and a reduced micronucleus rate against X-ray irradiation compared to that of non-microbeam irradiated cells. The radioresistance response was diminished in both cell groups with the hemichannel inhibitor and in COX-2-knockout cells under cell-to-cell contact and sparsely distributed conditions. The results indicate that the RIBE upregulates the cell radioresistance through COX-2/PGE2 intercellular responses, thereby contributing to issues, such as the risk of cancer recurrence.

3.
Biology (Basel) ; 12(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36979111

ABSTRACT

Nuclear factor (erythroid-derived 2)-like 2 (NRF2), well-known as a master antioxidative response regulator in mammalian cells, is considered as a potential target for radiation protection and cancer therapy sensitization. We examined the response of NRF2 signaling in normal human lung fibroblast WI-38 cells to nucleus targeted irradiation by 3.4 MeV proton microbeam. Nucleus targeted irradiation stimulated the nucleus accumulation of NRF2 and the expression of its target gene, heme oxygenase 1 (HO-1). The nucleus accumulation of NRF2 increased from 3 h to 12 h post 500 proton irradiation. In the 500 protons range, higher number of protons resulted in increased NRF2 nucleus accumulation. Activating NRF2 with tert-butylhydroquinone reduced DNA double-strand break (DSB) formation in nucleus targeted irradiation by 15%. Moreover, ATM phosphorylation was found in nucleus targeted irradiation. Inhibiting ATM with ku55933 prevented NRF2 nucleus accumulation. Furthermore, nucleus targeted irradiation activated ERK 1/2, and ROS-ERK 1/2 signaling regulated NRF2 nucleus accumulation. Taken together, NRF2 signaling was activated by nucleus targeted irradiation and mitigated DNA DSB. The discovery of ATM and ERK 1/2 as upstream regulators of NRF2 signaling in nucleus targeted cells revealed new information regarding radiation protection.

4.
Radiat Res ; 197(2): 122-130, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34634126

ABSTRACT

Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.


Subject(s)
Gap Junctions
5.
Radiat Res ; 194(3): 288-297, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32942306

ABSTRACT

It has been reported that in cells exposed to low-dose radiation, radio-adaptive responses can be induced which make irradiated cells refractory to subsequent high-dose irradiation. However, whether adaptive responses are possible when only the cytoplasm, not the nucleus, of the cell is exposed to radiation is still unclear. In this study, using the proton microbeam facility at the National Institute of Radiological Sciences (Japan), we found that cytoplasmic irradiation activates radio-adaptive responses in normal human lung fibroblast WI-38 cells. Our results showed that when cells received cytoplasmic irradiation with 500 protons prior to 2 Gy or 6 Gy X-ray broad-beam irradiation, the DNA double-strand break levels were significantly reduced. In contrast, at cytoplasmic irradiation with less than 100 protons, the radio-adaptive response was not detected. Moreover, the time interval between cytoplasmic irradiation and whole-cell X-ray irradiation should be longer than 6 h for the induction of adaptive responses. In addition, cytoplasmic irradiation elevated the level of cellular mitochondrial superoxide, which enhanced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2) and its mediated nuclear accumulation of nuclear factor (erythroid-derived 2)-like 2 (NRF2). This signaling pathway contributed to cytoplasmic irradiation-induced adaptive response as supported by the observations that treatment with the mitochondrial superoxide scavenger mito-tempol, ERK 1/2 inhibitor U0126 or NRF2 inhibitor ML385 could repress the adaptive response. Overall, we showed that cytoplasmic irradiation induces radio-adaptive responses and that mitochondrial superoxide/ERK 1/2/NRF2 signaling is a mechanism. Our results provide new information on the biological effects induced by cytoplasm-targeted irradiation.


Subject(s)
Cytoplasm/metabolism , Cytoplasm/radiation effects , Fibroblasts/cytology , Fibroblasts/radiation effects , Cell Line , DNA Breaks, Double-Stranded/radiation effects , Dose-Response Relationship, Radiation , Humans , Mitochondria/metabolism , Mitochondria/radiation effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-E2-Related Factor 2/metabolism , Superoxides/metabolism
6.
Life (Basel) ; 10(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824801

ABSTRACT

In this study, we aimed to evaluate the cellular response of healthy human fibroblasts induced by different types of ultra-low-fluence radiations, including gamma rays, neutrons and high linear energy transfer (LET) heavy ions. NB1RGB cells were pretreated with ultra-low-fluence radiations (~0.1 cGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before being exposed to an X-ray-challenging dose (1.5 Gy). Helium (LET = 2.3 keV/µm), carbon (LET = 13.3 keV/µm) and iron (LET = 200 keV/µm) ions were generated with the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No differences in cell death-measured by colony-forming assay-were observed regardless of the radiation type applied. In contrast, mutation frequency, which was detected through cell transformation into 6-thioguanine resistant clones, was 1.9 and 4.0 times higher in cells pretreated with helium and carbon ions, respectively, compared to cells exposed to X-ray-challenging dose alone. Moreover, cells pretreated with iron ions or gamma-rays showed a mutation frequency similar to cells exposed to X-ray-challenging dose alone, while cells pretreated with neutrons had 0.15 times less mutations. These results show that cellular responses triggered by ultra-low-fluence irradiations are radiation-quality dependent. Altogether, this study shows that ultra-low-fluence irradiations with the same level as those reported in the International Space Station are capable of inducing different cellular responses, including radio-adaptive responses triggered by neutrons and genomic instability mediated by high-LET heavy ions, while electromagnetic radiations (gamma rays) seem to have no biologic impact.

7.
Dent Mater ; 35(12): 1718-1727, 2019 12.
Article in English | MEDLINE | ID: mdl-31582323

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the penetration depth of silver into sound and demineralized dentin after application of silver diamine fluoride (SDF). METHODS: Two hundred and eighty-eight dentin specimens were used. The specimens were divided into 3 groups: (1) sound dentin (control), (2) 30min EDTA-treated dentin; and (3) 13h EDTA-treated dentin. SDF was applied to all specimens. Each group was divided into 3 subgroups according to storage time into: 24h, 2 weeks and 1-year storage time. Each subgroup was further divided into four subgroups (n=8) according to different examinations as optical microscope (OM) observation, scanning electron microscopic (SEM) observation, elemental analysis with energy dispersive spectroscopy (EDS) and Micro-PIXE test. RESULTS: The OM showed discoloration in the superficial layer after 24h and keep extending deeper after 2 weeks and 1-year. SEM showed silver crystals within dentinal tubules after 2 weeks and 1-year. EDS analysis can detect silver penetration only in the 1-year group reaching around 1200µm inside dentin. Micro-PIXE test detected silver at all time intervals, confirming the EDS depth results. SIGNIFICANCE: It can be concluded that silver ions can completely infiltrate the demineralized dentin lesion with further penetration into the underlying mineralized dentin.


Subject(s)
Fluorides, Topical , Quaternary Ammonium Compounds , Dentin , Microscopy, Electron, Scanning , Silver Compounds
8.
Int J Mol Sci ; 20(19)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547201

ABSTRACT

Although the kidneys comprise a critical target of uranium exposure, the dynamics of renal uranium distribution have remained obscure. Uranium is considered to function physiologically in the form of uranyl ions that have high affinity for phosphate groups. The present study applied microbeam-based elemental analysis to precisely determine the distribution of phosphorus and uranium in the kidneys of male Wistar rats exposed to uranium. One day after a single subcutaneous injection of uranyl acetate (2 mg/kg), areas of concentrated phosphorus were scattered in the S3 segments of the proximal tubule of the kidneys, whereas the S3 segments in control rats and in rats given a lower dose of uranium (0.5 mg/kg) contained phosphorus without concentrated phosphorus. Areas with concentrated phosphorus contained uranium 4- to 14-fold more than the mean uranium concentration (126-472 vs. 33.1 ± 4.6 µg/g). The chemical form of uranium in the concentrated phosphorus examined by XAFS was uranium (VI), suggesting that the interaction of uranyl ions with the phosphate groups of biomolecules could be involved in the formation of uranium concentration in the proximal tubules of kidneys in rats exposed to uranium.


Subject(s)
Kidney Tubules, Proximal/metabolism , Organometallic Compounds , Phosphorus/metabolism , Uranium/metabolism , Animals , Kidney Tubules, Proximal/pathology , Male , Organometallic Compounds/pharmacokinetics , Organometallic Compounds/pharmacology , Rats , Rats, Wistar
9.
Radiat Res ; 191(2): 211-216, 2019 02.
Article in English | MEDLINE | ID: mdl-30526323

ABSTRACT

Increased understanding of radiation-induced secondary bystander effect (RISBE) is relevant to radiation therapy since it likely contributes to normal tissue injury and tumor recurrence, subsequently resulting in treatment failure. In this work, we developed a simple method based on proton microbeam radiation and a transwell insert co-culture system to elucidate the RISBE between irradiated human lung cancer cells and nonirradiated human normal cells. A549 lung cancer cells received a single dose or fractionated doses of proton microbeam radiation to generate the primary bystander cells. These cells were then seeded on the top of the insert with secondary bystander WI-38 normal cells growing underneath in the presence or absence of gap junction intercellular communication (GJIC) inhibitor, 18-α-glycyrrhetnic acid (AGA). Cells were co-cultured before harvesting and assayed for micronuclei formation. The results of this work showed that fractionated doses of protons caused less DNA damage in the secondary bystander WI-38 cells compared to a single radiation dose, where the means differ by 20%. However, the damaging effect in the secondary bystander normal cells could be eliminated when treated with AGA. This novel work reflects our effort to demonstrate that GJIC plays a major role in the RISBE generated from the primary bystander cancer cells.


Subject(s)
Bystander Effect/radiation effects , Dose Fractionation, Radiation , Protons , A549 Cells , Cell Line , DNA Damage , Gap Junctions/drug effects , Glycyrrhetinic Acid/pharmacology , Humans
10.
J Environ Radioact ; 178-179: 84-94, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28797796

ABSTRACT

A low 134Cs/137Cs ratio anomaly in the north-northwest (NNW) direction from the Fukushima Dai-ichi Nuclear Power Station (FDNPS) is identified by a new analysis of the 134Cs/137Cs ratio dataset which we had obtained in 2011-2015 by a series of car-borne surveys that employed a germanium gamma-ray spectrometer. We found that the 134Cs/137Cs ratio is slightly lower (0.95, decay-corrected to March 11, 2011) in an area with a length of about 15 km and a width of about 3 km in the NNW direction from the FDNPS than in other directions from the station. Furthermore, the area of this lower 134Cs/137Cs ratio anomaly corresponds to a narrow contamination band that runs NNW from the FDNPS and it is nearly parallel with the major and heaviest contamination band in the west-northwest. The plume trace with a low 134Cs/137Cs ratio previously found by other researchers within the 3-km radius of the FDNPS is in a part of the area with the lower 134Cs/137Cs ratio anomaly that we found. Our result suggests that this lower 134Cs/137Cs ratio anomaly is the area which was contaminated before March 13, 2011 (UTC) in association with the hydrogen explosion of Unit 1 on March 12, 2011 at 06:36 (UTC) and it was less influenced by later subsequent plumes.


Subject(s)
Air Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Radiation Monitoring , Japan , Spectrometry, Gamma
11.
Mutat Res ; 803-805: 1-8, 2017 10.
Article in English | MEDLINE | ID: mdl-28689138

ABSTRACT

Understanding the mechanisms underlying the radiation-induced bystander effect (RIBE) and bi-directional signaling between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to cancer radiotherapy. The present study investigated propagation of RIBE signals between human lung carcinoma A549 cells and normal lung fibroblast WI38 cells in bystander cells, either directly or indirectly contacting irradiated A549 cells. We prepared A549-GFP/WI38 co-cultures and A549-GFP/A549 co-cultures, in which A549-GFP cells stably expressing H2BGFP were co-cultured with either A549 cells or WI38 cells, respectively. Using the SPICE-NIRS microbeam, only the A549-GFP cells were irradiated with 500 protons per cell. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured for up to 24h post-irradiation in three categories of cells: (1) "targeted"/irradiated A549-GFP cells; (2) "neighboring"/non-irradiated cells directly contacting the "targeted" cells; and (3) "distant"/non-irradiated cells, which were not in direct contact with the "targeted" cells. We found that DSB repair in targeted A549-GFP cells was enhanced by co-cultured WI38 cells. The bystander response in A549-GFP/A549 cell co-cultures, as marked by γ-H2AX levels at 8h post-irradiation, showed a decrease to non-irradiated control level when approaching 24h, while the neighboring/distant bystander WI38 cells in A549-GFP/WI38 co-cultures was maintained at a similar level until 24h post-irradiation. Surprisingly, distant A549-GFP cells in A549-GFP/WI38 co-cultures showed time dependency similar to bystander WI38 cells, but not to distant cells in A549-GFP/A549 co-cultures. These observations indicate that γ-H2AX was induced in WI38 cells as a result of RIBE. WI38 cells were not only involved in rescue of targeted A549, but also in the modification of RIBE against distant A549-GFP cells. The present results demonstrate that radiation-induced bi-directional signaling had extended a profound influence on cellular sensitivity to radiation as well as the sensitivity to RIBE.


Subject(s)
Bystander Effect/radiation effects , DNA Breaks, Double-Stranded , DNA Repair , Fibroblasts/radiation effects , Signal Transduction , A549 Cells , Cell Line , Coculture Techniques , Histones/metabolism , Humans , Lung Neoplasms/radiotherapy , Protons
12.
Dent Mater J ; 36(4): 482-490, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28367910

ABSTRACT

This study aimed to evaluate the inhibitory effect of experimental pastes containing surface pre-reacted glass ionomer (S-PRG) fillers on enamel demineralization. Bovine blocks were treated twice a day for 4 days by 7 groups; experimental pastes containing 0-30 wt% S-PRG filler (S00, S01, S05, S10, and S30), deionized water (DW) as negative control, and NaF paste (MP) as positive control. The surfaces were demineralized by acetic acid for 3 days. Mineral loss (ML) was calculated by micro-computed X-ray tomography. The treated surface was finally investigated with scanning electron microscope (SEM) and micro-focused particle induced X-ray emission (micro-PIXE). S05, S10 and S30 demonstrated significantly lower ML than S00, S01 and DW (p<0.05). S10 showed the greatest inhibitory effect, which was significantly greater than MP. The S-PRG filler containing experimental pastes demonstrated a potential to inhibit enamel demineralization. Sr ion incorporation was confirmed on the enamel surface with the experimental pastes.


Subject(s)
Dental Enamel , Toothpastes , Animals , Cattle , Ointments , Sodium Fluoride
13.
Biomed Mater Eng ; 26(1-2): 1-8, 2015.
Article in English | MEDLINE | ID: mdl-26484550

ABSTRACT

Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test.


Subject(s)
Nickel/chemistry , Patch Tests/methods , Skin Absorption , Skin/chemistry , Skin/ultrastructure , Spectrometry, X-Ray Emission/methods , Absorption, Physiological , Animals , In Vitro Techniques , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence/methods , Nickel/analysis , Tissue Distribution
14.
Mutat Res ; 773: 43-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25769186

ABSTRACT

Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.


Subject(s)
Bystander Effect , Neoplastic Stem Cells/radiation effects , Aldehyde Dehydrogenase/metabolism , Cell Line, Tumor , Humans , Neoplastic Stem Cells/physiology , Nitric Oxide/physiology , Radiation Tolerance
15.
J Environ Radioact ; 139: 281-293, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25189817

ABSTRACT

We constructed a new car-borne survey system called Radi-Probe with a portable germanium gamma-ray spectrometer onboard a cargo truck, to identify radionuclides and quantify surface contamination from the accident at Fukushima Dai-ichi Nuclear Power Station. The system can quickly survey a large area and obtain ambient dose equivalent rates and gamma-ray energy spectra with good energy resolution. We also developed a new calibration method for the system to deal with an actual nuclear disaster, and quantitative surface deposition densities of radionuclides, such as (134)Cs and (137)Cs, and kerma rates of each radionuclide can be calculated. We carried out car-borne survey over northeastern and eastern Japan (Tohoku and Kanto regions of Honshu) from 25 September through 7 October 2012. We discuss results of the distribution of ambient dose equivalent rate H(∗)(10), (134)Cs and (137)Cs surface deposition densities, spatial variation of (134)Cs/(137)Cs ratio, and the relationship between surface deposition densities of (134)Cs/(137)Cs and H(∗)(10). The ratio of (134)Cs/(137)Cs was nearly constant within our measurement precision, with average 1.06 ± 0.04 in northeastern and eastern Japan (decay-corrected to 11 March, 2011), although small variations from the average were observed.


Subject(s)
Air Pollutants, Radioactive/analysis , Automobiles , Fukushima Nuclear Accident , Radiation Monitoring/methods , Radioactive Fallout/analysis , Radioisotopes/analysis , Japan , Nuclear Power Plants , Radiation Monitoring/instrumentation , Seasons
16.
Mutat Res ; 763-764: 39-44, 2014.
Article in English | MEDLINE | ID: mdl-24680692

ABSTRACT

Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549-A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549-WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy.


Subject(s)
Bystander Effect/radiation effects , DNA Breaks, Double-Stranded/radiation effects , DNA, Neoplasm/metabolism , Lung Neoplasms , Protons , Cell Line, Tumor , Coculture Techniques , Gap Junctions/metabolism , Histones/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Neoplasm Proteins/metabolism
17.
J Radiat Res ; 54(4): 736-47, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23287773

ABSTRACT

The Single Particle Irradiation system to Cell (SPICE) facility at the National Institute of Radiological Sciences (NIRS) is a focused vertical microbeam system designed to irradiate the nuclei of adhesive mammalian cells with a defined number of 3.4 MeV protons. The approximately 2-µm diameter proton beam is focused with a magnetic quadrupole triplet lens and traverses the cells contained in dishes from bottom to top. All procedures for irradiation, such as cell image capturing, cell recognition and position calculation, are automated. The most distinctive characteristic of the system is its stability and high throughput; i.e. 3000 cells in a 5 mm × 5 mm area in a single dish can be routinely irradiated by the 2-µm beam within 15 min (the maximum irradiation speed is 400 cells/min). The number of protons can be set as low as one, at a precision measured by CR-39 detectors to be 99.0%. A variety of targeting modes such as fractional population targeting mode, multi-position targeting mode for nucleus irradiation and cytoplasm targeting mode are available. As an example of multi-position targeting irradiation of mammalian cells, five fluorescent spots in a cell nucleus were demonstrated using the γ-H2AX immune-staining technique. The SPICE performance modes described in this paper are in routine use. SPICE is a joint-use research facility of NIRS and its beam times are distributed for collaborative research.


Subject(s)
Cell Nucleus/radiation effects , Particle Accelerators/instrumentation , Protons , Radiobiology/instrumentation , Bystander Effect/radiation effects , Cytoplasm/radiation effects , DNA Breaks, Double-Stranded/radiation effects , Dose-Response Relationship, Radiation , Equipment Design , Histones/metabolism , Humans , Microscopy, Fluorescence , Polyethylene Glycols/chemistry , Radiation Dosage
18.
J Radiol Prot ; 33(1): 91-100, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23295938

ABSTRACT

In this study, microbeam protons were used to provide the priming dose to induce an in vivo radioadaptive response (RAR) in the embryos of zebrafish, Danio rerio, against subsequent challenging doses provided by x-ray photons. The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed. The embryos were dechorionated at 4 h post fertilisation (hpf) and irradiated at 5 hpf by microbeam protons. For each embryo, one irradiation point was chosen, to which 5, 10, 20, 30, 40, 50, 100, 200, 300 and 500 protons each with an energy of 3.4 MeV were delivered. The embryos were returned to the incubator until 10 hpf to further receive the challenging exposure, which was achieved using 2 Gy of x-ray irradiation, and then again returned to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labelling (TUNEL) assay. The results revealed that at least 200 protons (with average radiation doses of about 300 and 650 mGy absorbed by an irradiated epithelial and deep cell, respectively) would be required to induce RAR in the zebrafish embryos in vivo. Our previous investigation showed that 5 protons delivered at 10 points on an embryo would already be sufficient to induce RAR in the zebrafish embryos. The difference was explained in terms of the radiation-induced bystander effect as well as the rescue effect.


Subject(s)
Adaptation, Physiological/physiology , Embryo, Nonmammalian/physiology , Embryo, Nonmammalian/radiation effects , Protons , Radiation Tolerance/physiology , Radiation Tolerance/radiation effects , Zebrafish/embryology , Adaptation, Physiological/radiation effects , Animals , Radiation Dosage
19.
J Radiat Res ; 53(3): 475-81, 2012.
Article in English | MEDLINE | ID: mdl-22498889

ABSTRACT

The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym as SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed to irradiate dechorionated zebrafish embryos at the 2-cell stage at 0.75 h post fertilization (hpf) by microbeam protons. Either one or both of the cells of the embryos were irradiated with 10, 20, 40, 50, 80, 100, 160, 200, 300 and 2000 protons each with an energy of 3.37 MeV. The embryos were then returned back to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay, with the apoptotic signals captured by a confocal microscope. The results revealed a triphasic dose-response for zebrafish embryos with both cells irradiated at the 2-cell stage, namely, (1) increase in apoptotic signals for < 200 protons (< 30 mGy), (2) hormesis to reduce the apoptotic signals below the spontaneous number for 200-400 protons (at doses of 30-60 mGy), and (3) increase in apoptotic signals again for > 600 protons (at doses > 90 mGy). The dose response for zebrafish embryos with only one cell irradiated at the 2-cell stage was also likely a triphasic one, but the apoptotic signals in the first zone (< 200 protons or < 30 mGy) did not have significant differences from those of the background. At the same time, the experimental data were in line with induction of radiation-induced bystander effect as well as rescue effect in the zebrafish embryos, particular in those embryos with unirradiated cells.


Subject(s)
Embryo, Nonmammalian/radiation effects , Protons/adverse effects , Zebrafish/embryology , Animals , Apoptosis/radiation effects , Bystander Effect , DNA Breaks, Double-Stranded , Dose-Response Relationship, Radiation , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryonic Development/radiation effects , Zebrafish/metabolism
20.
J Radiat Res ; 52(2): 193-8, 2011.
Article in English | MEDLINE | ID: mdl-21187667

ABSTRACT

Polymeric micelles loaded with cis-diamminedichloroplatinum(II), CDDP, (cisplatin micelles) enable higher accumulation in solid tumors and lower toxicities compared with CDDP alone. The combined use of cisplatin micelles with radiation is expected to enhance therapeutic effects and reduce side effects. The kinetics of cisplatin micelle uptake, however, have not been fully understood. Particle Induced X-Ray Emission has been employed in this study to measure the time transients of platinum in Chinese Hamster ovary cells. The results show that the platinum content of cells treated with cisplatin micelles increased more slowly than with CDDP alone, suggesting that cellular uptake could be controlled using micelles. The CDDP released from micelles was predominantly incorporated into the cells by diffusion. The uptake characteristics were further analyzed using micelles with different collapse rates. The results and techniques used in this study will be useful for designing an optimum treatment plan combining platinum-containing polymeric micelles and radiation in clinical applications.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Cisplatin/pharmacokinetics , Micelles , Phenols/pharmacology , Animals , Biological Transport , CHO Cells , Cricetinae , Cricetulus , Diffusion , Female , Kinetics , Models, Biological , Time Factors , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL