Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int J Neonatal Screen ; 9(4)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873845

ABSTRACT

Introduction and Abstracts of the 2023 APHL/ISNS Newborn Screening Symposium in Sacramento, CA, USA from 15-19 October 2023.

2.
Pediatrics ; 152(2)2023 08 01.
Article in English | MEDLINE | ID: mdl-37465909

ABSTRACT

Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder of creatine biosynthesis due to pathogenic variants in the GAMT gene that lead to cerebral creatine deficiency and neurotoxic levels of guanidinoacetate. Untreated, GAMT deficiency is associated with hypotonia, significant intellectual disability, limited speech development, recurrent seizures, behavior problems, and involuntary movements. The birth prevalence of GAMT deficiency is likely between 0.5 and 2 per million live births. On the basis of small case series and sibling data, presymptomatic treatment with oral supplements of creatine, ornithine, and sodium benzoate, and a protein-restricted diet to reduce arginine intake, appear to substantially improve health and developmental outcomes. Without newborn screening, diagnosis typically happens after the development of significant impairment, when treatment has limited utility. GAMT deficiency newborn screening can be incorporated into the tandem-mass spectrometry screening that is already routinely used for newborn screening, with about 1 per 100 000 newborns screening positive. After a positive screen, diagnosis is established by finding an elevated guanidinoacetate concentration and low creatine concentration in the blood. Although GAMT deficiency is significantly more rare than other conditions included in newborn screening, the feasibility of screening, the low number of positive results, the relative ease of diagnosis, and the expected benefit of presymptomatic dietary therapy led to a recommendation from the Advisory Committee on Heritable Disorders in Newborns and Children to the Secretary of Health and Human Services that GAMT deficiency be added to the Recommended Uniform Screening Panel. This recommendation was accepted in January 2023.


Subject(s)
Language Development Disorders , Movement Disorders , Child , Humans , Infant, Newborn , Guanidinoacetate N-Methyltransferase/genetics , Creatine , Neonatal Screening/methods , Language Development Disorders/diagnosis , Movement Disorders/diagnosis , Movement Disorders/genetics , Movement Disorders/therapy
4.
Int J Neonatal Screen ; 9(2)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37092514

ABSTRACT

The Recommended Uniform Screening Panel (RUSP) is the list of conditions recommended by the US Secretary of Health and Human Services for inclusion in state newborn screening (NBS). During 2010-2022, seven conditions were added to the RUSP: severe combined immunodeficiency (SCID) (2010), critical congenital heart disease (CCHD) (2011), glycogen storage disease, type II (Pompe) (2015), mucopolysaccharidosis, type I (MPS I) (2016), X-linked adrenoleukodystrophy (X-ALD) (2016), spinal muscular atrophy (SMA) (2018), and mucopolysaccharidosis, type II (MPS II) (2022). The adoption of SCID and CCHD newborn screening by programs in all 50 states and three territories (Washington, D.C.; Guam; and Puerto Rico) took 8.6 and 6.8 years, respectively. As of December 2022, 37 programs screen for Pompe, 34 for MPS I, 32 for X-ALD, and 48 for SMA. The pace of implementation based on the average additional number of NBS programs per year was most rapid for SMA (11.3), followed by CCHD (7.8), SCID (6.2), MPS I (5.4), Pompe (4.9), and X-ALD (4.7).

5.
Int J Neonatal Screen ; 9(2)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37092517

ABSTRACT

Newborn screening (NBS) is a state or territory-based public health system that screens newborns for congenital diseases that typically do not present with clinical symptoms at birth but can cause significant mortality and morbidity if not detected or treated quickly. NBS continues to be one of the most successful public health interventions in the US, providing early detection and intervention to all infants. The increase in overall birth prevalence of core Recommended Uniform Screening Panel (RUSP) diseases detected via dried blood spot (DBS) specimens from 2015-2017 (17.50-18.31 per 10,000) to 2018-2020 (20.07 per 10,000), as reported into the APHL NewSTEPs database, affirms the importance and impact of NBS programs. This report presents aggregate numbers and birth prevalence of diseases detected by DBS on the RUSP from 2018-2020, including data from fifty US states and two territories.

6.
Genet Med ; 25(2): 100330, 2023 02.
Article in English | MEDLINE | ID: mdl-36445366

ABSTRACT

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is an X-linked condition caused by pathogenic variants in the iduronate-2-sulfatase gene. The resulting reduced activity of the enzyme iduronate-2-sulfatase leads to accumulation of glycosaminoglycans that can progressively affect multiple organ systems and impair neurologic development. In 2006, the US Food and Drug Administration approved idursulfase for intravenous enzyme replacement therapy for MPS II. After the data suggesting that early treatment is beneficial became available, 2 states, Illinois and Missouri, implemented MPS II newborn screening. Following a recommendation of the Advisory Committee on Heritable Disorders in Newborns and Children in February 2022, in August 2022, the US Secretary of Health and Human Services added MPS II to the Recommended Uniform Screening Panel, a list of conditions recommended for newborn screening. MPS II was added to the Recommended Uniform Screening Panel after a systematic evidence review reported the accuracy of screening, the benefit of presymptomatic treatment compared with usual case detection, and the feasibility of implementing MPS II newborn screening. This manuscript summarizes the findings of the evidence review that informed the Advisory Committee's decision.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Child , Humans , Infant, Newborn , United States , Mucopolysaccharidosis II/diagnosis , Mucopolysaccharidosis II/genetics , Neonatal Screening , Iduronic Acid , Iduronate Sulfatase/therapeutic use , Glycosaminoglycans , Enzyme Replacement Therapy/methods
7.
Int J Neonatal Screen ; 8(2)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35466199

ABSTRACT

Newborn screening (NBS) is an essential public health service that performs screening to identify those newborns at increased risk for a panel of disorders, most of which are genetic. The goal of screening is to link those newborns at the highest risk to timely intervention and potentially life-saving treatment. The global COVID-19 pandemic led to disruptions within the United States public health system, revealing implications for the continuity of newborn screening laboratories and follow-up operations. The impacts of COVID-19 across different states at various time points meant that NBS programs impacted by the pandemic later could benefit from the immediate experiences of the earlier impacted programs. This article will review the collection, analysis, and dissemination of information during the COVID-19 pandemic facilitated by a national, centralized technical assistance and resource center for NBS programs.

8.
Int J Neonatal Screen ; 9(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36648768

ABSTRACT

Judith "Judi" Tuerck, RN, MS, one of the true pioneers in the development of newborn screening (NBS), passed away on Saturday, 18 June 2022 (Figure 1) [...].

9.
Int J Neonatal Screen ; 7(4)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34940053

ABSTRACT

Beta-thalassemia, a heritable condition of abnormal hemoglobin production, is not a core condition on the United States Recommended Uniform Screening Panel (RUSP) for state and territorial newborn screening (NBS) programs. However, screening for sickle cell disease (which is on the core RUSP) also detects reduced or absent levels of hemoglobin (Hb) A and certain other Hb variants associated with beta-thalassemia and, thus, allows for a timely referral to appropriate healthcare to minimize sequalae of the disease. The Association of Public Health Laboratories' Hemoglobinopathy Workgroup administered a comprehensive survey of all U.S. NBS programs to assess beta-thalassemia testing methodologies, the cutoffs for defining beta-thalassemia major, and the reporting and follow-up practices. Forty-six (87%) of the programs responded. Thirty-nine of the 46 responding programs (85%) report some form of suspected beta-thalassemia; however, the screening methods, the percentage of Hb A used as a cutoff for an indication of beta-thalassemia major, and the screening follow-up vary widely. The standardization of technical and reporting procedures may improve access to specialty care prior to severe complications, increase genetic counseling, and provide data needed to better understand the public health impact and clinical outcomes of beta-thalassemia in the United States.

10.
Int J Neonatal Screen ; 7(3)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34449529

ABSTRACT

Newborn screening (NBS) follow-up programs in the United States are managed at the state level, leaving limited opportunities for collaboration across programs and coordinated resource sharing. The Newborn Screening Technical assistance and Evaluation Program (NewSTEPs), a program of the Association of Public Health Laboratories (APHL), has established a national community of practice for NBS follow-up by creating a network of follow-up staff and stakeholders through education and engagement opportunities. The activities of NewSTEPs in support of NBS follow-up have strengthened information dissemination, collaboration, data collection and technical assistance-driven mentorship across the national system.

11.
Int J Neonatal Screen ; 7(3)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202531

ABSTRACT

Newborn screening (NBS) programs identify newborns at increased risk for genetic disorders, linking these newborns to timely intervention and potentially life-saving treatment. In the United States, the Health and Human Services (HHS) Advisory Committee on Heritable Disorders in Newborns and Children (ACHDNC) recommends the disorders for state NBS programs to screen. ACHDNC updated the Recommended Uniform Screening Panel to include Spinal Muscular Atrophy (SMA) in July 2018. As of June 2021, 34 state NBS programs had fully implemented SMA newborn screening, and at least 8 programs were pursuing implementation. This article will review current SMA screening processes, considerations, challenges, and status.

12.
Front Immunol ; 11: 577853, 2020.
Article in English | MEDLINE | ID: mdl-33193375

ABSTRACT

Severe combined immunodeficiency (SCID) is T cell development disorders in the immune system and can be detected at birth. As of December 2018, all 53 newborn screening (NBS) programs within the United States and associated territories offer universal screening for SCID. The Association of Public Health Laboratories (APHL), along with the Immune Deficiency Foundation (IDF), surveyed public health NBS system laboratory and follow-up coordinators regarding their NBS program's screening methodologies and targets, protocols for stakeholder notifications, and long-term follow-up practices. This report explores the variation that exists across NBS practices, revealing needs for efficiencies and educational resources across the NBS system to ensure the best outcomes for newborns.


Subject(s)
Aftercare/trends , Communication , Healthcare Disparities/trends , Long-Term Care/trends , Neonatal Screening/trends , Practice Patterns, Physicians'/trends , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/therapy , Health Care Surveys , Humans , Infant, Newborn , Quality Improvement/trends , Quality Indicators, Health Care/trends , Severe Combined Immunodeficiency/epidemiology , Stakeholder Participation , United States/epidemiology
13.
Int J Neonatal Screen ; 6(3)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-33239590

ABSTRACT

Newborn screening (NBS) is a state-based public health program that aims to identify newborns at risk of certain disorders in the first days after birth to prevent permanent disability or death. Disorders on the Health and Human Services Federal Advisory Committee's Recommended Uniform Screening Panel (RUSP) have been adopted by most state NBS programs; however, each state mandates specific disorders to be screened and implements their own system processes. Congenital adrenal hyperplasia (CAH) was added to the RUSP in 2005, and currently all 53 NBS programs universally screen for it. This paper provides a landscape of CAH screening in the United States, utilizing data voluntarily entered by state NBS programs in the Newborn Screening Technical assistance and Evaluation Program data repository. Data reported encompasses NBS state profile data (follow-up, disorder testing and the reporting of processes and methodologies for screening), quality indicator data (timeliness of CAH NBS) and confirmed cases. This comprehensive landscape analysis compares the CAH NBS systems across the US. This is vital in ultimately ensuring that newborns with CAH at risk of salt crisis receive appropriate intervention in a timely manner.

14.
Int J Neonatal Screen ; 6(2): 35, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33073030

ABSTRACT

Data were collected from 39 newborn screening (NBS) programs to provide insight into the time and factors required for implementing statewide screening for Pompe, Mucopolysaccharidosis type I (MPS I), adrenoleukodystrophy (ALD), and Spinal Muscular Atrophy (SMA). Newborn screening program readiness to screen statewide for a condition was assessed using four phases: (1) approval to screen; (2) laboratory, follow-up, and information technology capabilities; (3) education; and (4) implementation of statewide newborn screening. Seventeen states (43.6%) reached statewide implementation for at least one new disorder. Those states reported that it took 28 months to implement statewide screening for Pompe and MPS I, 30.5 months for ALD, and 20 months for SMA. Using survival curve analysis to account for states still in progress, the estimated median time to statewide screening increased to 75 months for Pompe and 66 months for MPS I. When looking at how long each readiness component took to complete, laboratory readiness was one of the lengthier processes, taking about 39 months. Collaboration with other NBS programs and hiring were the most frequently mentioned facilitators to implementing newborn screening. Staffing or inability to hire both laboratory and follow-up staff was the most frequently mentioned barrier.

15.
Int J Neonatal Screen ; 6(2): 48, 2020 06.
Article in English | MEDLINE | ID: mdl-33073038

ABSTRACT

Public health programs in the United States screen more than four million babies each year for at least 30 genetic disorders. The Health and Human Services (HHS) Advisory Committee on Heritable Disorders in Newborns and Children (ACHDNC) recommends the disorders for state newborn screening (NBS) programs to screen. ACHDNC updated the Recommended Uniform Screening Panel (RUSP) to include Pompe disease in March 2015. To support the expansion of screening for Pompe disease, the Association of Public Health Laboratories (APHL) proposed the Newborn Screening Technical assistance and Evaluation Program (NewSTEPs) New Disorders Implementation Project, funded by the HHS' Health Resources and Services Administration (HRSA) Maternal and Child Health Bureau (MCHB). Through this project, APHL provided financial support to 15 state NBS programs to enable full implementation of screening for Pompe disease. As of April 27, 2020, nine of the 15 programs had fully implemented Pompe disease newborn screening and six programs are currently pursuing implementation. This article will discuss how states advanced to statewide implementation of screening for Pompe disease, the challenges associated with implementing screening for this condition, the lessons learned during the project, and recommendations for implementing screening for Pompe disease.

16.
MMWR Morb Mortal Wkly Rep ; 69(36): 1269-1272, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32915167

ABSTRACT

Alpha-thalassemia comprises a group of inherited disorders in which alpha-hemoglobin chain production is reduced. Depending on the genotype, alpha-thalassemia results in moderate to profound anemia, hemolysis, growth delays, splenomegaly, and increased risk for thromboembolic events; certain patients might require chronic transfusions. Although alpha-thalassemia is not a core condition of the United States Recommended Uniform Screening Panel* for state newborn screening programs, methodologies used by some newborn screening programs to detect sickle cell disease, which is a core panel condition, also detect a quantitative marker of alpha-thalassemia, hemoglobin (Hb) Bart's, an abnormal type of hemoglobin. The percentage of Hb Bart's detected correlates with alpha-thalassemia severity. The Association of Public Health Laboratories' Hemoglobinopathy Workgroup conducted a survey of state newborn screening programs' alpha-thalassemia screening methodologies and reporting and follow-up practices. Survey findings indicated that 41 of 44 responding programs (93%) report some form of alpha-thalassemia results and 57% used a two-method screening protocol. However, the percentage of Hb Bart's used for thalassemia classification, the types of alpha-thalassemia reported, and the recipients of this information varied widely. These survey findings highlight the opportunity for newborn screening programs to revisit their policies as they reevaluate their practices in light of the recently released guideline from the Clinical and Laboratory Standards Institute (CLSI) on Newborn Screening for Hemoglobinopathies (1). Although deferring to local programs for policies, the report used a cutoff of 25% Hb Bart's in its decision tree, a value many programs do not use. Standardization of screening and reporting might lead to more timely diagnoses and health care services and improved outcomes for persons with a clinically significant alpha-thalassemia.


Subject(s)
Neonatal Screening/methods , alpha-Thalassemia/diagnosis , Female , Health Care Surveys , Humans , Infant, Newborn , Male , United States/epidemiology , alpha-Thalassemia/epidemiology
17.
MMWR Morb Mortal Wkly Rep ; 69(36): 1265-1268, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32915168

ABSTRACT

Newborn screening (NBS) identifies infants at risk for congenital disorders for which early intervention has been shown to improve outcomes (1). State public health programs are encouraged to screen for disorders on the national Recommended Uniform Screening Panel (RUSP), which increased from 29 disorders in 2005 to 35 in 2018.* The RUSP includes hearing loss (HL) and critical congenital heart defects, which can be detected through point-of-care screening, and 33 disorders detected through laboratory screening of dried blood spot (DBS) specimens. Numbers of cases for 33 disorders on the RUSP (32 DBS disorders and HL) reported by 50 U.S. state programs were tabulated. The three subtypes of sickle cell disease (SCD) listed as separate disorders on the RUSP (S,S disease; S,beta-thalassemia; and S,C disease) were combined for the current analysis, and the frequencies of the resulting disorders were calculated relative to annual births. During 2015-2017, the overall prevalence was 34.0 per 10,000 live births. Applying that frequency to 3,791,712 live births in 2018,† approximately 12,900 infants are expected to be identified each year with one of the disorders included in the study. The most prevalent disorder is HL (16.5 per 10,000), and the most prevalent DBS disorders are primary congenital hypothyroidism (CH) (6.0 per 10,000), SCD (4.9 per 10,000), and cystic fibrosis (CF) (1.8 per 10,000). Notable changes in prevalence for each of these disorders have occurred since the previous estimates based on 2006 births (2). The number of infants identified at a national level highlights the effect that NBS programs are having on infant health through early detection, intervention, and potential improved health, regardless of geographic, racial/ethnic, or socioeconomic differences.


Subject(s)
Congenital Abnormalities/diagnosis , Neonatal Screening , Congenital Abnormalities/epidemiology , Humans , Infant, Newborn , Prevalence , United States/epidemiology
18.
PLoS One ; 15(4): e0231050, 2020.
Article in English | MEDLINE | ID: mdl-32240266

ABSTRACT

BACKGROUND: Newborn screening (NBS) aims to achieve early identification and treatment of affected infants prior to onset of symptoms. The timely completion of each step (i.e., specimen collection, transport, testing, result reporting), is critical for early diagnosis. Goals developed by the Secretary of Health and Human Services' Advisory Committee on Heritable Disorders in Newborns and Children (ACHDNC) for NBS timeliness were adopted (time-critical results reported by five days of life, and non-time-critical results reported by day seven), and implemented into a multi-year quality improvement initiative (NewSTEPS 360) aimed to decrease the time to result reporting and intervention. METHODS: The NBS system from specimen collection through reporting of results was assessed (bloodspot specimen collection, specimen shipping, sample testing, and result reporting). Annual data from 25 participating NBS programs were analyzed; the medians (and interquartile range, IQR) of state-specific percent of specimens that met the goal are presented. RESULTS: The percent of specimens collected before 48 hours of life increased from 95% (88-97%) in 2016 to 97% (IQR 92-98%) in 2018 for the 25 states, with 20 (80%) of programs collecting more than 90% of the specimens within 48 hours of birth. Approximately 41% (IQR 29-57%) of specimens were transported within one day of collection. Time-critical result reporting in the first five days of life improved from 49% (IQR 26-74%) in 2016 to 64% (42%-71%) in 2018, and for non-time critical results from 64% (IQR 58%-78%) in 2016 to 81% (IQR 68-91%) in 2018. Laboratories open seven days a week in 2018 reported 95% of time-critical results within five days, compared to those open six days (62%), and five days (45%). CONCLUSION: NBS programs that participated in NewSTEPs 360 made great strides in improving timeliness; however, ongoing quality improvement efforts are needed in order to ensure all infants receive a timely diagnosis.


Subject(s)
Neonatal Screening/standards , Quality Improvement/standards , Advisory Committees/standards , Child , Humans , Infant, Newborn , Laboratories/standards
19.
Int J Neonatal Screen ; 5(1): 13, 2019 Mar.
Article in English | MEDLINE | ID: mdl-33072973

ABSTRACT

The Newborn Screening Technical assistance and Evaluation Program (NewSTEPs) conducts non-regulatory site reviews of state newborn screening programs in the US with the goal of providing comprehensive reports and recommendations to support quality improvements within the system. A detailed coding and qualitative analysis of data extracted from reports of seven programs visited between 2012 and 2017, of thirteen pre-site visit surveys completed by state newborn screening programs, and of information from interviews conducted with three site review experts revealed four common themes that exist across states within the national newborn screening system. These themes include opportunities to implement improvements in: (1) communications inside and outside of the state newborn screening program, (2) education, (3) information technology, and (4) operations. The cross-cutting recommendations provided by NewSTEPs within the comprehensive site review reports may prove valuable for all state programs to consider and to incorporate as quality improvement measures in the absence of a full site review. The analysis of the site review process and recommendations identified important opportunities for improvement, many of which were previously unknown to be common across programs, and also provided affirmation of known challenges.

20.
Int J Neonatal Screen ; 5(3): 34, 2019 Sep.
Article in English | MEDLINE | ID: mdl-33072993

ABSTRACT

Newborn screening is a public health program facilitated by state public health departments with the goal of improving the health of affected newborns throughout the country. Experts in the newborn screening community established a panel of eight quality indicators (QIs) to track quality practices within and across the United States newborn screening system. The indicators were developed following iterative refinement, consensus building, and evaluation. The Newborn Screening Technical assistance and Evaluation Program (NewSTEPs) implemented a national data repository in 2013 that captures the quality improvement metrics from each state. The QIs span the newborn screening process from collection of a dried blood spot through medical intervention for a screened condition. These data are collected and analyzed to support data-driven outcome assessments and tracking performance to improve the quality of the newborn screening system.

SELECTION OF CITATIONS
SEARCH DETAIL
...