Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122519, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36812756

ABSTRACT

Resonant structures, such as metamaterials, which can focus electromagnetic fields on a localized spot, are essential to perform label-free detection with high sensitivity in the terahertz (THz) range. Moreover, the refractive index (RI) of a sensing analyte is the most important aspect in the optimization of the characteristics of a highly sensitive resonant structure. However, in previous studies, the sensitivity of metamaterials was calculated while considering the RI of an analyte as a constant value. Consequently, the result for a sensing material with a specific absorption spectrum was inaccurate. To solve this problem, this study developed a modified Lorentz model. Split-ring resonator-based metamaterials were fabricated to verify the model, and the glucose-sensing range from 0 to 500 mg/dL was measured using a commercial THz time-domain spectroscopy system. In addition, a finite-difference time-domain simulation was implemented based on the modified Lorentz model and fabrication design of the metamaterials. The calculation results were compared with the measurement results and were found to be consistent.

2.
Molecules ; 27(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36235135

ABSTRACT

'Seolhyang' strawberry is harvested before it is fully ripened and treated with CO2 to extend the shelf-life. However, the volatile changes in the 'Seolhyang' strawberry after short-term CO2 treatment have not been investigated, although the volatile profile is an important quality attribute. Herein, we investigated the effect of short-term high CO2 treatment on the changes in the composition of volatile compounds in 'Seolhyang' strawberries at two ripening stages (i.e., half-red and bright-red) during cold storage using headspace solid-phase microextraction and gas chromatography-mass spectrometry. Furthermore, the effect of CO2 treatment on fruit quality with respect to the aroma was investigated. A total of 30 volatile compounds were identified. Storage increased the volatile compound concentrations, and the total concentration of volatiles in the CO2-treated strawberries was lower than that of the untreated strawberries during storage. The production of some characteristic strawberry volatiles (e.g., 4-methoxy-2,5-dimethyl-3(2H)-furanone) was inhibited in CO2-treated strawberries. However, CO2 treatment helped maintain the concentrations of hexanal and 2-hexenal, which are responsible for the fresh odor in strawberries. Interestingly, CO2 treatment suppressed the production of off-odor volatiles, acetaldehyde, and hexanoic acid during strawberry storage. Thus, short-term CO2 treatment may help maintain the fresh aroma of strawberries during cold storage.


Subject(s)
Fragaria , Volatile Organic Compounds , Acetaldehyde/analysis , Carbon Dioxide/analysis , Fragaria/chemistry , Fruit/chemistry , Odorants/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacology
3.
Sensors (Basel) ; 20(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261105

ABSTRACT

The Bessel-Gauss beam has outstanding features, such as long depth of focus (DOF) and super resolution for nondestructive imaging inspection. However, most approaches for generating a nondiffractive beam have mainly focused on extending the DOF. In this study, the ultra-long high-resolution Bessel-like beam was first demonstrated in a sub-THz wave range (140 GHz). An axicon lens having an apex angle of 110° was used to generate the highly focused Bessel-like beam. To extend the depth of focus, we varied the incident beam angle on the axicon by moving the first lens distance. With the newly developed beam profiler, 3D beam profiles were acquired for characterizing in detail the beam propagation. As a result, even if the depth of focus was 72 times (154 mm) the source wavelength (2.143 mm), the focusing beamwidth was simultaneously maintained at 1.4 times (3.0 mm) the wavelength (i.e., the near-wavelength beamwidth). An ultra-long needle beam of near-wavelength size can promote the applicability of the sub-THz imaging technique in noninvasive sensing applications, such as computer tomography, materials inspection, and through-the-wall-imaging.

4.
Nanomaterials (Basel) ; 10(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198391

ABSTRACT

Issues related to global energy and environment as well as health crisis are currently some of the greatest challenges faced by humanity, which compel us to develop new pollution-free and sustainable energy sources, as well as next-generation biodiagnostic solutions. Optical functional nanostructures that manipulate and confine light on a nanometer scale have recently emerged as leading candidates for a wide range of applications in solar energy conversion and biosensing. In this review, recent research progress in the development of photonic and plasmonic nanostructures for various applications in solar energy conversion, such as photovoltaics, photothermal conversion, and photocatalysis, is highlighted. Furthermore, the combination of photonic and plasmonic nanostructures for developing high-efficiency solar energy conversion systems is explored and discussed. We also discuss recent applications of photonic-plasmonic-based biosensors in the rapid management of infectious diseases at point-of-care as well as terahertz biosensing and imaging for improving global health. Finally, we discuss the current challenges and future prospects associated with the existing solar energy conversion and biosensing systems.

5.
Sensors (Basel) ; 20(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143335

ABSTRACT

The food industry requires rapid and simple detection methods for preventing harm from pathogenic bacteria. Until now, various technologies used to detect foodborne bacteria were time-consuming and laborious. Therefore, we have developed an automated immunomagnetic separation combined with a colorimetric assay for the rapid detection of E. coli O157:H7 in food samples. The colorimetric detection method using enzymatic reaction is fascinating because of its simplicity and rapidity and does not need sophisticated devices. Moreover, the proposed procedures for the detection of bacteria in food take less than 3 h including pre-enrichment, separation and detection steps. First, target-specific immunomagnetic beads were introduced to contaminated milk in a pre-enrichment step. Second, the pre-enriched sample solution containing target bacteria bound on immunomagnetic beads was injected into an automated pretreatment system. Subsequently, the immunomagnetic beads along with target bacteria were separated and concentrated into a recovery tube. Finally, released ß-galactosidase from E. coli O157:H7 after lysis was reacted with chlorophenol red ß-galactopyranoside (CPRG) used as a substrate and the colorimetric change of CPRG was determined by absorbance measuring or the naked eye. By the proposed approach in this study, we could detect 3 × 102 CFU/mL of E. coli O157:H7 from a milk sample within 3 h.


Subject(s)
Colorimetry/methods , Enzyme Assays , Escherichia coli O157/isolation & purification , Immunomagnetic Separation/methods , beta-Galactosidase/metabolism , Animals , Automation , Escherichia coli O157/ultrastructure , Milk/microbiology
6.
Article in English | MEDLINE | ID: mdl-31737618

ABSTRACT

This research demonstrates the development of a transmission-mode localized surface plasmon resonance (LSPR) sensor chip using a cuvette cell system for the sensitive detection of a biomolecule marker such as C-reactive protein (CRP). In order to develop a highly sensitive LSPR sensor chip, plasmonically active gold nanoparticles (AuNPs) were decorated onto various transparent substrates in the form of a uniform, high-density single layer using a self-assembly process. The transparent substrate surface was modified with amine functional groups via (3-Aminopropyl)triethoxysilane (APTES) treatment, and the ligand concentration and temperature (0.5% APTES at 60°C) were then optimized to control the binding energy with AuNPs. The optimized plasmonically active strip was subsequently prepared by dipping the amine-functionalized substrate into AuNPs for 8 h. The optimized plasmonic strip functionalized with anti-CRP was transformed into a portable LSPR sensor chip by placing it inside a cuvette cell system, and its detection performance was evaluated using CRP as a model sample. The detection limit for CRP using our LSPR sensor chip was 0.01 µg/mL, and the detection dynamic range was 0.01-10 µg/mL with a %CV of <10%, thus confirming its selectivity and good reproducibility. These findings illustrate that the highly sensitive portable LSPR biosensor developed in this study is expected to be widely used in a diverse range of fields such as diagnosis, medical care, environmental monitoring, and food quality control.

7.
Sensors (Basel) ; 18(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563253

ABSTRACT

In this study, we demonstrated a highly sensitive detection method of 4-methylimidazole (4-MeI), a carcinogenic material, by using a terahertz (THz) metamaterial at a THz region. The THz metamaterials were fabricated with a metal array, using an electric-field-coupled inductor-capacitor (ELC) resonator structure, and a finite-difference time-domain (FDTD) simulation showed good agreement with the experimental results. We measured the THz spectra of the metamaterials to detect the 4-MeI concentrations of 0, 1, 2, 5, 10, 15, and 20 mg/L. The resonance frequency of the metamaterial was shifted by, approximately, 8 GHz and transmittance at the resonance frequency increased to 2 × 10-3, as the concentration was increased, up to 20 mg/L. Our study provides new insight into the application of metamaterials in detecting carcinogens, using a THz technique.

8.
Food Chem ; 245: 282-288, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29287372

ABSTRACT

We investigated the feasibility of qualitative food analysis using complex refractive index mapping of food materials in the terahertz (THz) frequency range. We studied optical properties such as the refractive index and absorption coefficient of food materials, including insects as foreign substances, from 0.2 to 1.3 THz. Although some food materials had a complex composition, their refractive indices were approximated with effective medium values, and therefore, they could be discriminated on the complex refractive index map. To demonstrate food quality inspection with THz imaging, we obtained THz reflective images and time-of-flight imaging of hidden defects in a sugar and milk powder matrix by using time domain THz pulses. Our results indicate that foreign substances can be clearly classified and detected according to the optical parameters of the foods and insects by using THz pulses.


Subject(s)
Food Analysis/methods , Food Quality , Optical Phenomena , Refractometry
9.
Sensors (Basel) ; 17(12)2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29210982

ABSTRACT

We experimentally modulate the refractive index and the absorption coefficient of an SU-8 dry film in the terahertz region by UV light (362 nm) exposure with time dependency. Consequently, the refractive index of SU-8 film is increased by approximately 6% after UV light exposure. Moreover, the absorption coefficient also changes significantly. Using the reflective terahertz imaging technique, in addition, we can read security information printed by UV treatment on an SU-8 film that is transparent in the visible spectrum. From these results, we successfully demonstrate security printing and reading by using photoresist materials and the terahertz technique. This investigation would provide a new insight into anti-counterfeiting applications in fields that need security.

10.
Nanoscale ; 9(18): 5872-5878, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28430273

ABSTRACT

The interfacing structural effect of Ag/graphene oxide (GO) nanohybrid films on SERS was investigated by using Ag nanostructures immobilized on polyallylamine hydrochloride (PAA) functionalized-GO and reduced GO (RGO) films. We found that the electron transfer from Ag nanostructures to GO derivatives dominantly occurred at the interfaces between Ag nanostructures and the sp2 carbon domains of GO and RGO films. By utilizing 4-aminothiophenol (4-ATP) as a Raman probe, it was revealed that this electron transfer process augmented the enhancement factor (EF) of 4-ATP up to ∼1.8 fold on Ag/PAA-RGO nanohybrid films compared to Ag/PAA-GO nanohybrid films with the increasing interfacing area between Ag nanostructures and the sp2 carbon domains of GO derivatives through wet-chemical processes.

11.
Foodborne Pathog Dis ; 12(11): 914-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26287636

ABSTRACT

Emetic toxin-producing Bacillus cereus group species are an important problem, because the staple food for Korean is grains such as rice. In this study, we determined the prevalence (24 of 129 isolates) of emetic B. cereus in 36,745 stool samples from sporadic food-poisoning cases in Korea between 2007 and 2008. The toxin gene profile, toxin production, and biofilm-forming ability of the emetic B. cereus isolates were investigated. Repetitive element sequence polymorphism polymerase chain reaction fingerprints (rep-PCR) were also used to assess the intraspecific biodiversity of these isolates. Emetic B. cereus was present in 0.07% of the sporadic food-poisoning cases. The 24 emetic isolates identified all carried the nheABC and entFM genes and produced NHE enterotoxin. However, they did not have hemolysin BL toxin or related genes. A relationship between biofilm formation and toxin production was not observed in this study. The rep-PCR fingerprints of the B. cereus isolates were not influenced by the presence of toxin genes, or biofilm-forming ability. The rep-PCR assay discriminated emetic B. cereus isolates from nonemetic isolates, even if this assay did not perfectly discriminate these isolates. Further study on emetic isolates possessing a high degree of diversity may be necessary to evaluate the performance of the subtyping assay to discriminate emetic and nonemetic B. cereus isolates and could provide a more accurate indication of the risk from B. cereus strains.


Subject(s)
Bacillus cereus/physiology , Biofilms/growth & development , Enterotoxins/genetics , Feces/microbiology , Foodborne Diseases/microbiology , Bacillus cereus/isolation & purification , Emetics/analysis , Enterotoxins/analysis , Hemolysin Proteins/analysis , Hemolysin Proteins/genetics , Humans , Polymerase Chain Reaction , Republic of Korea
12.
Biomed Opt Express ; 6(5): 1929-41, 2015 May 01.
Article in English | MEDLINE | ID: mdl-26137392

ABSTRACT

Unlike X-ray systems, a terahertz imaging system can distinguish low-density materials in a food matrix. For applying this technique to food inspection, imaging resolution and acquisition speed ought to be simultaneously enhanced. Therefore, we have developed the first continuous-wave sub-terahertz transmission imaging system with a polygonal mirror. Using an f-theta lens and a polygonal mirror, beam scanning is performed over a range of 150 mm. For obtaining transmission images, the line-beam is incorporated with sample translation. The imaging system demonstrates that a pattern with 2.83 mm line-width at 210 GHz can be identified with a scanning speed of 80 mm/s.

13.
J Food Prot ; 77(12): 2081-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474054

ABSTRACT

This study investigated the feasibility of detecting pesticides using terahertz (THz) spectroscopy in high-density polyethylene and/or wheat flour mixtures. The absorption spectra of seven pesticides (dicofol, chlorpyrifos, chlorpyrifos-methyl, daminozide, imidacloprid, diethyldithiocarbamate, and dimethyldithiocarbamate) were measured in the frequency range 0.1 to 3 THz at room temperature. Five of the seven pesticides exhibited specific absorption peaks in the low-energy THz range. The two remaining pesticides had no specific absorption peaks in this frequency range, but they exhibited different frequency-dependent refractive indices. The absorption coefficients of imidacloprid increased with its increasing weight ratio in high-density polyethylene, and the fitted power absorptions and refractive indices using a Maxwell-Garnett effective medium model were comparable to the measured data. Imidacloprid was also identified from its characteristic absorption peaks in wheat flour mixtures, and a linear relationship between the absorption coefficient and the weight ratio was observed. Our results show the potential of detection of selected pesticides in foods, such as wheat flour, using THz spectroscopy.


Subject(s)
Flour/analysis , Pesticides/analysis , Terahertz Spectroscopy , Triticum/chemistry , Carbamates/analysis , Chlorpyrifos/analogs & derivatives , Chlorpyrifos/analysis , Dicofol/analysis , Dimethyldithiocarbamate/analysis , Ditiocarb/analysis , Feasibility Studies , Imidazoles/analysis , Least-Squares Analysis , Neonicotinoids , Nitro Compounds/analysis , Polyethylene , Seeds/chemistry , Succinates/analysis
14.
Appl Opt ; 53(7): 1406-12, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24663370

ABSTRACT

In contrast to conventional x-ray food inspection systems that have difficulty in detecting low-density materials, a terahertz imaging system can even identify insects and plastics embedded in a food matrix. A reflection-mode continuous-wave terahertz imaging system was therefore developed for application to food quality inspection, which requires fast, compact, and low-cost detection. High-speed operation of the terahertz imaging system was achieved through the use of a beam-steering tool. A reasonable compromise between the spatial resolution and the scan length of an aspheric f-theta scanning lens could be achieved by optimizing the lens parameters.


Subject(s)
Food Analysis/instrumentation , Food Contamination/analysis , Food Quality , Lenses , Terahertz Imaging/instrumentation , Equipment Design , Equipment Failure Analysis
15.
Sensors (Basel) ; 13(1): 71-85, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23344374

ABSTRACT

Food quality monitoring, particularly foreign object detection, has recently become a critical issue for the food industry. In contrast to X-ray imaging, terahertz imaging can provide a safe and ionizing-radiation-free nondestructive inspection method for foreign object sensing. In this work, a quasi-Bessel beam (QBB) known to be nondiffracting was generated by a conical dielectric lens to detect foreign objects in food samples. Using numerical evaluation via the finite-difference time-domain (FDTD) method, the beam profiles of a QBB were evaluated and compared with the results obtained via analytical calculation and experimental characterization (knife edge method, point scanning method). The FDTD method enables a more precise estimation of the beam profile. Foreign objects in food samples, namely crickets, were then detected with the QBB, which had a deep focus and a high spatial resolution at 210 GHz. Transmitted images using a Gaussian beam obtained with a conventional lens were compared in the sub-terahertz frequency experimentally with those using a QBB generated using an axicon.


Subject(s)
Food Contamination , Food Industry/instrumentation , Terahertz Imaging/methods , Algorithms , Animals , Equipment Design , Flour , Food Industry/methods , Gryllidae , Models, Theoretical , Normal Distribution , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL