Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Oral Biosci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942192

ABSTRACT

OBJECTIVES: Japanese children have been shown to exhibit decreased masticatory function; however, limited evidence is available regarding the efficacy of certain food items in improving this issue. Therefore, this study examined the effects of chewing hard gummy candy on the masticatory function of Japanese children aged 6-12 years. METHODS: The study included 26 participants (10 boys and 16 girls; mean age ± standard error = 9.3 ± 0.3 years) who were asked to chew hard gummy candy twice daily for 4 weeks at home. The lip-closing force, occlusal force, and masticatory performance of the participants were recorded before commencement (T1), 4 weeks after commencement (T2), and 4 weeks after completion (T3) of the training. Statistical analyses were performed using the Wilcoxon rank-sum test or the Wilcoxon signed-rank test with Bonferroni correction. RESULTS: No correlation was observed between masticatory function and sex at T1. The lip-closing and right occlusal forces increased significantly after 4 weeks of exercise, and the effects persisted for another 4 weeks after completion. The masticatory performance also improved after training, although these effects did not persist and deteriorated substantially 4 weeks after completion of the training. CONCLUSIONS: Habitual mastication training using hard gummy candy markedly enhances masticatory function (e.g., lip-closing force, occlusal force, and masticatory performance) in Japanese children.

2.
RSC Adv ; 13(27): 18561-18567, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37346939

ABSTRACT

For practical application of perovskite photovoltaic devices, it is vital to choose an appropriate carrier extraction material with high mobility, high conductivity, and appropriate molecular energy levels. One of the most frequently used hole transport materials, spiro-OMeTAD, is known to show an improvement in its electrical properties after the oxidation reaction. However, this oxidation reaction is generally accomplished by simple atmospheric exposure, often taking one or more nights under atmospheric conditions, and thus the development of a rapid oxidation strategy without the degradation of device performance is strongly required. Here, we propose a rapid and reproducible oxidation route employing a UV ozone treatment process that enables quick oxidation of spiro-OMeTAD in solution, as short as 30 seconds. Optical and electrical characterization reveals that this method modifies the highest occupied molecular orbital energy level of spiro-OMeTAD to reduce the voltage loss, and also improves the conductivity and mobility, leading to the enhancement in the photovoltaic properties. This finding will provide useful insights into the further development of spiro-OMeTAD-based perovskite solar cell devices.

3.
Dalton Trans ; 51(40): 15361-15369, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36148548

ABSTRACT

A combination of 19F magic angle spinning (MAS) nuclear magnetic resonance (NMR) and density functional theory (DFT) were used to study the ordering of F atoms in Pb2Ti4O9F2. This analysis revealed that F atoms predominantly occupy two of the six available inequivalent sites in a ratio of 73 : 27. DFT-based calculations explained the preference of F occupation on these sites and quantitatively reproduced the experimental occupation ratio, independent of the choice of functional. We concluded that the Pb atom's 6s2 lone pair may play a role (∼0.1 eV per f.u.) in determining the majority and minority F occupation sites with partial density of states and crystal orbital Hamiltonian population analyses applied to the DFT wave functions.

4.
Inorg Chem ; 61(32): 12552-12558, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35925771

ABSTRACT

Negative thermal expansion (NTE) is an unusual thermophysical phenomenon and has gained attention as a way of controlling thermal expansion. Here, we report a substantial NTE in fluoroapatite Pb5(VO4)3F in a limited temperature range. The dilatometric study revealed volume shrinkage below 150 K, giving a linear thermal expansion coefficient of αL = -44 ppm/K in the temperature range from 140 to 120 K upon heating. The NTE behavior is associated with a structural transition from the hexagonal (P63/m) phase to the monoclinic (P21/b) phase. Such a structural transition has been found in other apatite-type compounds, but the magnitude of the volume change in Pb5(VO4)3F is remarkable. Our structural analysis revealed that the structural transition is classified as an antiferroelectric-to-paraelectric transition and the volume change during the transition is enhanced by the steric effect of 6s2 lone-pair electrons of Pb2+.

5.
Chemistry ; 26(56): 12862-12867, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32428309

ABSTRACT

The catalytic asymmetric total synthesis of (-)-exiguolide, a complex 20-membered macrolide embedded with a bis(tetrahydropyran) motif, is reported. The convergent synthesis involves the construction of the C1-C11 tetrahydropyran segment via catalytic asymmetric allylation and Prins cyclization, and the formation of the C12-C21 phosphonate segment via catalytic asymmetric cyclocondensation reaction and Johnson-Claisen rearrangement. The synthesis of 15-epi-exiguolide is also described.


Subject(s)
Macrolides/chemistry , Catalysis , Molecular Structure , Stereoisomerism
6.
Chem Asian J ; 15(4): 540-545, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31912639

ABSTRACT

The Pb-V oxyhalide apatite compounds Pb5 (VO4 )3 X (X=F, Cl, Br, I) were successfully synthesized using a facile solution method and studied with respect to their structural/optical characteristics and electronic band structures. UV-visible diffuse reflectance spectroscopy, electrochemical analysis and first-principles calculations showed that the synthesized apatites behaved as n-type semiconductors, with absorption bands in the UV-visible region that could be assigned to electron transitions from the valence band to a conduction band formed by hybridized V 3d and Pb 6p orbitals. Among the apatites examined, Pb5 (VO4 )3 I had the smallest band gap of 2.7 eV, due to an obvious contribution of I 5p orbitals to the valence band maximum. Based on its visible light absorption capability, Pb5 (VO4 )3 I generated a continuous anodic photocurrent under visible light (λ>420 nm) in a solution of 0.1 m NaI in acetonitrile.

7.
J Am Chem Soc ; 141(49): 19397-19403, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31738059

ABSTRACT

Negative thermal expansion (NTE) induced by simultaneous mechanisms, that is, charge transfer and polar-nonpolar transitions, was observed for the first time in BiNi1-xFexO3 (0.25 ≤ x ≤ 0.5). The low-temperature phase was found to have a polar structure (space group of R3c) with a Bi3+0.5(1+x)Bi5+0.5(1-x)Ni2+1-xFe3+xO3 charge distribution and short-range ordering of Bi3+ and Bi5+. The volume reduction upon heating that was induced by charge transfer between Bi5+ and Ni2+ decreased with increasing x because of the reduction in the amount of Ni2+. Simultaneous polar-nonpolar transition also contributed to NTE, and a composition-independent enhanced volume reduction of ∼2% was observed.

8.
J Am Chem Soc ; 141(43): 17158-17165, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31588742

ABSTRACT

Mixed-anion compounds (e.g., oxynitrides and oxysulfides) are potential candidates as photoanodes for visible-light water oxidation, but most of them suffer from oxidative degradation by photogenerated holes, leading to low stability. Here we show an exceptional example of a stable, mixed-anion water-oxidation photoanode that consists of an oxyfluoride, Pb2Ti2O5.4F1.2, having a band gap of ca. 2.4 eV. Pb2Ti2O5.4F1.2 particles, which were coated on a transparent conductive glass (FTO) support and were subject to postdeposition of a TiO2 overlayer, generated an anodic photocurrent upon band gap photoexcitation of Pb2Ti2O5.4F1.2 (λ <520 nm) with a rather negative photocurrent onset potential of ca. -0.6 V vs NHE, which was independent of the pH of the electrolyte solution. Stable photoanodic current was observed even without loading a water oxidation promoter such as CoOx. Nevertheless, loading CoOx onto the TiO2/Pb2Ti2O5.4F1.2/FTO electrode further improved the anodic photoresponse by a factor of 2-3. Under AM1.5G simulated sunlight (100 mW cm-2), stable water oxidation to form O2 was achieved using the optimized Pb2Ti2O5.4F1.2 photoanode in the presence of an applied potential smaller than 1.23 V, giving a Faradaic efficiency of 93% and almost no sign of deactivation during 4 h of operation. This study presents the first example of photoelectrochemical water splitting driven by visible-light excitation of an oxyfluoride that stably works, even without a water oxidation promoter, which is distinct from ordinary mixed-anion photoanodes that usually require a water oxidation promoter.

9.
Adv Mater ; : e1705665, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29920786

ABSTRACT

Bismuth ferrite (BiFeO3 ) is the most widely studied multiferroic material with robust ferroelectricity and antiferromagnetic ordering at room temperature. One of the possible device applications of this material is one that utilizes the ferroelectric/piezoelectric property itself such as ferroelectric memory components, actuators, and so on. Other applications are more challenging and make full use of its multiferroic property to realize novel spintronics and magnetic memory devices, which can be addressed electrically as well as magnetically. This progress report summarizes the recent attempt to control the piezoelectric and magnetic properties of BiFeO3 by cobalt substitution.

10.
J Am Chem Soc ; 140(21): 6648-6655, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29733632

ABSTRACT

Mixed anion compounds such as oxynitrides and oxychalcogenides are recognized as potential candidates of visible-light-driven photocatalysts since, as compared with oxygen 2p orbitals, p orbitals of less electronegative anion (e.g., N3-, S2-) can form a valence band that has more negative potential. In this regard, oxyfluorides appear unsuitable because of the higher electronegativity of fluorine. Here we show an exceptional case, an anion-ordered pyrochlore oxyfluoride Pb2Ti2O5.4F1.2 that has a small band gap (ca. 2.4 eV). With suitable modification of Pb2Ti2O5.4F1.2 by promoters such as platinum nanoparticles and a binuclear ruthenium(II) complex, Pb2Ti2O5.4F1.2 worked as a stable photocatalyst for visible-light-driven H2 evolution and CO2 reduction. Density functional theory calculations have revealed that the unprecedented visible-light-response of Pb2Ti2O5.4F1.2 arises from strong interaction between Pb-6s and O-2p orbitals, which is enabled by a short Pb-O bond in the pyrochlore lattice due to the fluorine substitution.

11.
Inorg Chem ; 57(9): 5615-5623, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29671318

ABSTRACT

We report the successful synthesis of three new Ruddlesden-Popper-type scandium oxychloride perovskites, Sr2ScO3Cl, Sr3Sc2O5Cl2, and Ba3Sc2O5Cl2, by conventional solid-state reaction. Small single crystals of Sr2ScO3Cl were obtained by a self-flux method, and the crystal structure was determined to belong to the tetragonal P4/ nmm space group ( a = 4.08066(14) Å, c = 14.1115(8) Å) by X-ray diffraction analysis. The scandium center forms a ScO5Cl octahedron with ordered apical oxygen and chlorine anions. The scandium cation, however, is shifted from the position of the octahedral center toward the apical oxygen anion, such that the coordination geometry of the Sc cation can be effectively viewed as an ScO5 pyramid. These structural features in the oxychloride are different from those of octahedral ScO5F coordinated with a partial O/F anion order at the apical sites in the oxyfluoride Sr2ScO3F. Rietveld refinements of the neutron powder diffraction data of Sr3Sc2O5Cl2 ( I4/ mmm: a = 4.107982(5) Å, c = 23.58454(7) Å) and Ba3Sc2O5Cl2 ( I4/ mmm: a = 4.206920(5) Å, c = 24.54386(6) Å) reveal the presence of pseudo ScO5 pyramids with the Cl anion being distant from the scandium cation, which is similar to the Sc-centered coordination geometry in Sr2ScO3Cl with the exception that the ScO5 pyramids form double layers by sharing the apical oxygen. Density functional calculations on Sr2ScO3Cl indicate the strong covalency of the Sc-O bonds but almost nonbonding interaction between Sc and Cl ions.

12.
Dalton Trans ; 47(5): 1371-1377, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29322130

ABSTRACT

Charge distribution changes in Bi- and Pb-3d transition metal perovskite type oxides were examined by comprehensive precise structural analysis, spectroscopy, and theoretical investigations. The change in the depth of the d level of the transition metal caused the intermetallic charge transfer. A temperature-induced charge-transfer transition in chemically modified BiNiO3 results in technologically important negative thermal expansion.

13.
Sci Rep ; 7(1): 5541, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28717225

ABSTRACT

Angiogenesis, new vessel formation from pre-existing vessels, is a highly conserved event through vertebrates. However, the system for tuning angiogenesis by species-intrinsic factors is totally unknown. miR-1224 is a member of mammal-specific mirtrons, which were identified as non-canonical microRNAs. We found that the expression of miR-1224 was upregulated in capillary-like tube-forming human umbilical vein endothelial cells on Matrigel. Enforced expression of miR-1224 stimulated tube formation, whereas repression of endogenous miR-1224 inhibited formation. Enforced expression of miR-1224 enhanced VEGF signaling and repressed NOTCH signaling. The adaptor protein of clathrin-dependent endocytosis, epsin2, which has been shown to be a suppressor of angiogenesis, was a direct target of miR-1224. Knockdown of EPN2 stimulated tube formation, while overexpression of EPN2 repressed miR-1224-mediated stimulation. Our findings indicate that miR-1224 is a mammal specific modulator of angiogenesis.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , MicroRNAs/genetics , Neovascularization, Physiologic/genetics , 3' Untranslated Regions , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology
14.
J Am Chem Soc ; 139(12): 4574-4581, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28240901

ABSTRACT

Perovskite PbCoO3 synthesized at 12 GPa was found to have an unusual charge distribution of Pb2+Pb4+3Co2+2Co3+2O12 with charge orderings in both the A and B sites of perovskite ABO3. Comprehensive studies using density functional theory (DFT) calculation, electron diffraction (ED), synchrotron X-ray diffraction (SXRD), neutron powder diffraction (NPD), hard X-ray photoemission spectroscopy (HAXPES), soft X-ray absorption spectroscopy (XAS), and measurements of specific heat as well as magnetic and electrical properties provide evidence of lead ion and cobalt ion charge ordering leading to Pb2+Pb4+3Co2+2Co3+2O12 quadruple perovskite structure. It is shown that the average valence distribution of Pb3.5+Co2.5+O3 between Pb3+Cr3+O3 and Pb4+Ni2+O3 can be stabilized by tuning the energy levels of Pb 6s and transition metal 3d orbitals.

15.
Inorg Chem ; 56(6): 3174-3181, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28233995

ABSTRACT

We have synthesized a new superconducting perovskite bismuth oxide by a facile hydrothermal route at 220 °C. The choice of starting materials, their mixing ratios, and the hydrothermal reaction temperature was crucial for obtaining products with superior superconducting properties. The structure of the powder sample was investigated using laboratory X-ray diffraction, high-resolution synchrotron X-ray diffraction (SXRD) data, and electron diffraction (ED) patterns [transmission electron microscopy (TEM) analysis]. The refinement of SXRD data confirmed a simple perovskite-type structure with a cubic cell of a = 4.27864(2) Å [space group Pm3̅m (No. 221)]. Elemental analysis detected magnesium in the final products, and a refinement based on SXRD and inductively coupled plasma data yielded an ideal undistorted simple cubic perovskite-type structure, with the chemical composition (Ba0.62K0.38)(Bi0.92Mg0.08)O3. ED patterns also confirmed the simple cubic perovskite structure; the cube-shaped microstructures and compositional homogeneity on the nanoscale were verified by scanning electron microscopy and TEM analyses, respectively. The fabricated compound exhibited a large shielding volume fraction of about 98% with a maximum Tcmag of ∼30 K, which was supported by the measured bismuth valence as well. Its electrical resistivity dropped at ∼21 K, and zero resistivity was observed below 7 K. The compound underwent thermal decomposition above 400 °C. Finally, the calculated band structure showed a metallic behavior for this hydrothermally synthesized bismuth oxide.

16.
Inorg Chem ; 55(12): 6124-9, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27254112

ABSTRACT

Monoclinic phases with Cm, Pm, and Cc space groups are indispensable to understand the high performance of electromechanical properties at the morphotropic phase boundary (MPB) of lead-based perovskite oxides Pb(ZrxTi1-x)O3 (PZT), [Pb(Mg1/3Nb2/3)O3]1-x-(PbTiO3)x (PMN-PT), and [Pb(Zn1/3Nb2/3)O3]1-x-(PbTiO3)x (PZN-PT). Here, a nearly single monoclinic phase with space group Cc was observed in the Bi-based lead-free perovskite compound Bi2ZnTi1-xMnxO6 at x = 0.4. This phase was the same as the low-temperature phase of the MPB composition of PZT but existed at a much higher temperature. Despite the reduced pseudo c/a ratio of 1.065, which is the same as that of PbTiO3 at room temperature, ionic model calculation based on the Rietveld refinement data indicated the polarization of Bi2ZnTi0.6Mn0.4O6 is 95.8 µC/cm(2). The tilting and significant anisotropic distortion of the octahedron were found to cause the c/a ratio to reduce. Accordingly, the effective piezoelectric constant d33 of Bi2ZnTi0.6Mn0.4O6 thin film was found to be 12 pm/V.

17.
Inorg Chem ; 55(12): 5747-9, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27243818

ABSTRACT

A new high-pressure polymorph of NaBiO3 (hereafter ß-NaBiO3) was synthesized under the conditions of 6 GPa and 600 °C. The powder X-ray diffraction pattern of this new phase was indexed with a hexagonal cell of a = 9.968(1) Å and c = 3.2933(4) Å. Crystal structure refinement using synchrotron powder X-ray diffraction data led to RWP = 8.53% and RP = 5.55%, and the crystal structure was closely related with that of Ba2SrY6O12. No photocatalytic activity for phenol decomposition was observed under visible-light irradiation in spite of a good performance for its mother compound, NaBiO3. The optical band-gap energy of ß-NaBiO3 was narrower than that of NaBiO3, which was confirmed with density of states curves simulated by first-principles density functional theory calculation.

18.
J Sleep Res ; 25(6): 746-753, 2016 12.
Article in English | MEDLINE | ID: mdl-27338238

ABSTRACT

We have demonstrated previously that Japanese sake yeast improves sleep quality in humans. In the present study, we examined the molecular mechanisms of sake yeast to induce sleep by monitoring locomotor activity, electromyogram and electroencephalogram in mice. Oral administration of Japanese sake yeast (100, 200, and 300 mg kg-1 ) decreased the locomotor activity by 18, 46 and 59% and increased the amount of non-rapid eye movement (NREM) sleep by 1.5-, 2.3- and 2.4-fold (to 37 ± 6, 57 ± 8, and 60 ± 4 min from 25 ± 6 min in the vehicle-administered group, respectively) in a dose-dependent manner for 4 h after oral administration. However, Japanese sake yeast did not change the amount of rapid eye movement (REM) sleep, the electroencephalogram power density during NREM sleep or show any adverse effects, such as rebound of insomnia, during 24 h postadministration and on the next day. An intraperitoneal pretreatment with an adenosine A2A receptor-selective antagonist, ZM241385 (15 mg kg-1 ), reduced the amount of NREM sleep of sake yeast-administered mice to the basal level, without changing basal amount of sleep. Conversely, an A1 receptor-selective antagonist, 8-cyclopentyltheophylline (10 mg kg-1 ), did not affect the sleep-promoting effect of Japanese sake yeast. Thus, Japanese sake yeast promotes NREM sleep via activation of adenosine A2A but not A1 receptors.


Subject(s)
Alcoholic Beverages/microbiology , Eye Movements/physiology , Receptor, Adenosine A2A/metabolism , Saccharomyces cerevisiae/classification , Sleep/physiology , Adenosine A1 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Administration, Oral , Animals , Electroencephalography , Electromyography , Eye Movements/drug effects , Japan , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Sleep/drug effects , Sleep, REM/physiology , Theophylline/analogs & derivatives , Theophylline/pharmacology , Time Factors , Triazines/pharmacology , Triazoles/pharmacology
19.
J Sleep Res ; 25(1): 116-23, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26354605

ABSTRACT

Activation of adenosine A2a receptors in cerebral neurons induces sleep in various mammals. It was previously found that Japanese sake yeast enriched in adenosine analogues activates A2a receptors in vitro and induces sleep in mice. Here it is reported that sake yeast activated A2a receptors in a cultured human cell line and improved human sleep quality in a clinical trial. Sake yeast activated A2a receptors in HEK cells in a dose-dependent manner with an EC50 of 40 µg mL(-1), and the activation was attenuated almost completely by the A2a receptor antagonist ZM241385 with an IC50 of 73 nm. In a double-blind placebo-controlled crossover clinical study, 68 healthy participants ingested tablets containing either 500 mg of sake yeast powder or a placebo (cellulose) 1 h before sleep for 4 days. Electroencephalograms were recorded during sleep at home with a portable device for 4 week days. Electroencephalogram analyses revealed that sake yeast supplementation significantly (P = 0.03) increased delta power during the first cycle of slow-wave sleep by 110%, without changing other sleep parameters. Sake yeast supplementation also significantly increased growth hormone secretion in the urine on awakening by 137% from 3.17 ± 0.41 (placebo) to 4.33 ± 0.62 (sake yeast) pg mg(-1) creatinine (P = 0.03). Subjective sleepiness (P = 0.02) and fatigue (P = 0.06) in the morning were improved by sake yeast. Given these benefits and the absence of adverse effects during the study period, it was concluded that sake yeast supplementation is an effective and safe way to support daily high-quality, deep sleep.


Subject(s)
Alcoholic Beverages/microbiology , Cell Extracts/administration & dosage , Cell Extracts/pharmacology , Saccharomyces cerevisiae/chemistry , Sleep/drug effects , Sleep/physiology , Adenosine A2 Receptor Antagonists/pharmacology , Adult , Cell Extracts/adverse effects , Cross-Over Studies , Double-Blind Method , Electroencephalography , Female , HEK293 Cells , Humans , Male , Powders , Receptor, Adenosine A2A/metabolism , Sleep Stages/drug effects , Sleep Stages/physiology , Triazines/pharmacology , Triazoles/pharmacology
20.
Inorg Chem ; 54(21): 10239-42, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26485452

ABSTRACT

The observation of anion order is indispensable for the investigation of oxyfluorides. However, the negligible contrast between O(2-) and F(-) in both X-ray and neutron diffraction obscures the distinct anion sites for Rietveld refinement. Therefore, the difference in the chemical bonding of M-O(2-) and M-F(-) is the key to determining anion order. In this study, bond-valence-sum calculations and determination of the electron density distribution by the maximum entropy method illustrated anion order in the newly synthesized oxyfluoride Pb2Ti4O9F2. These results demonstrate a promising method to determine anion order in mixed anion systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...