Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 47(40): 14195-14203, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-29850741

ABSTRACT

The chemical functionalization of nano-carbon materials such as single-walled carbon nanotubes (SWNTs) and graphene by metal complexes has attracted much attention due to the multitude of potential applications in efficient energy-conversion and -storage devices. The solubilization and single-chirality separation of SWNTs by surface modifications is a useful approach to manipulate SWNTs in the liquid phase. In this study, several Ru and Fe complexes containing two terminal quadruple hydrogen-bonded (H-bonded) ureidopyrimidinedione (UPy) groups were synthesized (Ru-1, Ru-UPy, and Fe-UPy) to form H-bonded supramolecular polymers by self-association. In order to control the solubility of these complexes in nonpolar solvents, Ru-UPy and Fe-UPy were endowed with long alkyl side chain groups in the coordinated 2,6-bis(benzimidazol-2-yl)pyridine ligand, while Ru-1 and Ru-2 do not contain such long alkyl chain groups. AFM measurements revealed that Ru-1, Ru-UPy, and Fe-UPy form a fiber-like network morphology on HOPG surfaces, arising from the H-bonded aggregation. However, only Ru-UPy and Fe-UPy are able to solubilize SWNTs effectively upon simple sonication in chlorobenzene. After the solubilization of a CoMoCAT® SWNT in chlorobenzene using Ru-UPy or Fe-UPy, UV-Vis-NIR spectra showed sharp peaks at 996 and 1150 nm, which were attributed to (6, 5) and (7, 6)-SWNTs. The Raman spectra of the solubilized SWNTs revealed peaks that were attributed to the radial breathing mode (RBM), which suggests an enrichment of semiconducting SWNTs, i.e., Ru-UPy and Fe-UPy are able to selectively solubilize semiconducting SWNTs. Cyclic voltammograms of films of SWNTs covered with Ru-UPy or Fe-UPy on ITO electrodes showed a well-defined adsorbed Ru(ii/iii) or Fe(ii/iii) wave. Upon addition of acid, the redox response from the adsorbed H-bonded Ru-UPy and Fe-UPy disappeared and only SWNTs were left on the ITO electrode. Moreover, the Ru-UPy/SWNT and Fe-UPy/SWNT hybrids exhibited non-linear I-V characteristics.

2.
Langmuir ; 33(43): 11901-11910, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28945096

ABSTRACT

We synthesized three types of binuclear Ru complexes (1-3) that contain pyrene anchors for the adsorption of 1-3 onto nanocarbon materials via noncovalent π-π interactions, in order to investigate their adsorption onto and their desorption from highly ordered pyrolytic graphite (HOPG). The adsorption saturation for 1 (6.22 pmol/cm2), 2 (2.83 pmol/cm2), and 3 (3.53 pmol/cm2) on HOPG was obtained from Langmuir isotherms. The desorption rate from HOPG electrodes decreased in the order 3 (2.4 × 10-5 s-1) > 2 (1.4 × 10-5 s-1) ≫ 1 (1.8 × 10-6 s-1). These results indicate that the number of pyrene anchors and their position of substitution in such complexes strongly affect the desorption behavior. However, neither the free energy of adsorption (ΔGads) nor the heterogeneous electron-transfer rate (kET) showed any significant differences among 1-3, albeit that the surface morphologies of the modified HOPG substrates showed domain structures that were characteristic for each Ru complex. In the case of 3, the average height changed from ∼2 to ∼4 nm upon increasing the concentration of the solution of 3 that was used for the surface modification. In contrast, the height for 1 and 2 remained constant (1.5-2 nm) upon increasing the concentration of the complexes in the corresponding solutions. While the molecular orientation of the Ru-Ru axis of 3 relative to the HOPG surface normal changed from parallel to perpendicular, the Ru-Ru axis in 1 and 2 remained parallel, which leads to an increased stability of 1 and 2.

3.
FEBS J ; 284(20): 3455-3469, 2017 10.
Article in English | MEDLINE | ID: mdl-28834260

ABSTRACT

DNA methylation in promoter regions represses gene expression and is copied over mitotic divisions by Dnmt1. Dnmt1 activity is regulated by its replication foci targeting sequence (RFTS) domain which masks the catalytic pocket. It has been shown that Dnmt1 activity on unmethylated DNA is inhibited in nucleosome cores. In the present study, we aimed to assess the effect of nuclesome formation on maintenance methylation at single CpG resolution. We show that Dnmt1 fully methylates naked linker DNA in dinucleosomes, whereas maintenance methylation was repressed at all CpG sites in nucleosome core particles. Deletion of RFTS partly released obstruction of Dnmt1 activity in core particles. Histone H3 tail peptides inhibited Dnmt1 in an RFTS-dependent manner and repression was modulated by acetylation or methylation. We propose a novel function of RFTS to regulate Dnmt1 activity in nucleosomes.


Subject(s)
Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Replication , Histones/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Protein Processing, Post-Translational , Acetylation , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Humans , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...