Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Neuroscience ; 528: 89-101, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37557948

ABSTRACT

Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. Preparations were superfused with artificial cerebrospinal fluid (25-26 °C), and inspiratory C4 ventral root activity was monitored. The responses to TFLLR of cells close to the cut surface were detected by calcium imaging or membrane potential recordings. Application of 10 µM TFLLR (4 min) induced a rapid and transient increase of calcium signal in cells of the ventrolateral respiratory regions of the medulla. More than 88% of responding cells (223/254 cells from 13 preparations) were also activated by low (0.2 mM) K+ solution, suggesting that they were astrocytes. Immunohistochemical examination demonstrated that PAR1 was expressed on many astrocytes. Respiratory-related neurons in the medulla were transiently hyperpolarized (-1.8 mV) during 10 µM TFLLR application, followed by weak membrane depolarization after washout. C4 burst rate decreased transiently in response to application of TFLLR, followed by a slight increase. The inhibitory effect was partially blocked by 50 µM theophylline. In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.


Subject(s)
Calcium , Receptor, PAR-1 , Animals , Rats , Animals, Newborn , Rats, Wistar , Brain Stem/physiology , Medulla Oblongata , Spinal Cord
2.
Front Physiol ; 14: 1131949, 2023.
Article in English | MEDLINE | ID: mdl-37179838

ABSTRACT

Background: The Japanese drug use system allowed the once-daily use of inhaled corticosteroid fluticasone furoate (FF) combined with a long-acting beta-2 agonist vilanterol (VI) and a long-acting muscarinic antagonist umeclidinium (UMEC) against asthma on 18 February 2021. We investigated the real-world effects of these drugs (FF/UMEC/VI) mainly on lung function tests. Methods: This was an open-label, uncontrolled, within-group time-series (before-after) study. Prior asthma treatment (inhaled corticosteroid with/without a long-acting beta-2 agonist with/without a long-acting muscarinic antagonist) was switched to FF/UMEC/VI 200/62.5/25 µg. Subjects were evaluated by lung function tests prior to, and 1-2 months after, initiation of FF/UMEC/VI 200/62.5/25 µg. Patients were asked questions regarding the asthma control test and preference for drugs. Results: Overall, 114 asthma outpatients (97% Japanese) were enrolled from February 2021 to April 2022: 104 subjects completed the study. Forced expiratory volume in 1 s, peak flow, and asthma control test score of FF/UMEC/VI 200/62.5/25 µg-treated subjects were significantly increased (p < 0.001, p < 0.001, and p < 0.01, respectively). In contrast with FF/VI 200/25 µg, instantaneous flow at 25% of the forced vital capacity and expiratory reserve volume were significantly increased by FF/UMEC/VI 200/62.5/25 µg (p < 0.01, p < 0.05, respectively). Sixty-six percent of subjects declared they wanted to continue FF/UMEC/VI 200/62.5/25 µg in the future. Adverse effects, mainly local, were seen in 30% of patients, but no serious adverse effects were seen. Conclusion: Once-daily FF/UMEC/VI 200/62.5/25 µg was effective against asthma without serious adverse events. This is the first report that demonstrated FF/UMEC/VI dilated peripheral airways using lung function tests. This evidence on drug effects may improve our understanding of pulmonary physiology and the pathophysiology of asthma.

3.
Front Neural Circuits ; 17: 1006424, 2023.
Article in English | MEDLINE | ID: mdl-37035503

ABSTRACT

Severe hypoxia induces seizures, which reduces ventilation and worsens the ictal state. It is a health threat to patients, particularly those with underlying hypoxic respiratory pathologies, which may be conducive to a sudden unexpected death in epilepsy (SUDEP). Recent studies provide evidence that brain microglia are involved with both respiratory and ictal processes. Here, we investigated the hypothesis that microglia could interact with hypoxia-induced seizures. To this end, we recorded electroencephalogram (EEG) and acute ventilatory responses to hypoxia (5% O2 in N2) in conscious, spontaneously breathing adult mice. We compared control vehicle pre-treated animals with those pre-treated with minocycline, an inhibitory modulator of microglial activation. First, we histologically confirmed that hypoxia activates microglia and that pre-treatment with minocycline blocks hypoxia-induced microglial activation. Then, we analyzed the effects of minocycline pre-treatment on ventilatory responses to hypoxia by plethysmography. Minocycline alone failed to affect respiratory variables in room air or the initial respiratory augmentation in hypoxia. The comparative results showed that hypoxia caused seizures, which were accompanied by the late phase ventilatory suppression in all but one minocycline pre-treated mouse. Compared to the vehicle pre-treated, the minocycline pre-treated mice showed a delayed occurrence of seizures. Further, minocycline pre-treated mice tended to resist post-ictal respiratory arrest. These results suggest that microglia are conducive to seizure activity in severe hypoxia. Thus, inhibition of microglial activation may help suppress or prevent hypoxia-induced ictal episodes.


Subject(s)
Minocycline , Seizures , Mice , Animals , Minocycline/pharmacology , Minocycline/therapeutic use , Seizures/drug therapy , Seizures/etiology , Microglia , Brain , Hypoxia/complications , Hypoxia/pathology
4.
PLoS One ; 17(11): e0277766, 2022.
Article in English | MEDLINE | ID: mdl-36449474

ABSTRACT

BACKGROUND: The oxidized high-density lipoprotein (oxHDL) is a possible marker for cardiovascular diseases. This study investigated the effects of smoking cessation with varenicline (a partial agonist of nicotinic acetylcholine receptors) on the levels of oxHDL in the serum of subjects compared with those of high-density lipoprotein cholesterol (HDL-C). METHODS: Data of 99 nicotine-dependent adult subjects who visited the smoking cessation outpatient services at International University of Health and Welfare Shioya Hospital were reviewed. Each subject was treated with varenicline titrated up to 1.0 mg twice daily for 12 weeks. Serum levels of oxHDL and HDL-C were repeatedly measured by enzyme-linked immunosorbent assay and enzymatic method, respectively. RESULTS: The serum levels of oxHDL were significantly decreased from 163.2 ± 96.6 to 148.3 ± 80.7 U/mL (p = 0.034, n = 99). This effect was more prominent when the data of subjects in whom the treatment was objectively unsuccessful (exhaled carbon monoxide at 3 months ≥ 10 ppm) were omitted (from 166.6 ± 98.4 to 147.4 ± 80.6 U/mL; p = 0.0063, n = 93). In contrast, the serum levels of HDL-C were significantly increased (p = 0.0044, n = 99). There was a close relationship between the baseline levels of oxHDL and HDL-C (R = 0.45, p < 0.0001, n = 99). Changes in the levels of oxHDL were closely associated with changes in the levels of exhaled carbon monoxide in subjects in whom smoking cessation with varenicline was very effective (decrease in exhaled carbon monoxide by ≥ 15 ppm after treatment with varenicline; R = 0.42, p = 0.0052, n = 43). CONCLUSIONS: Although there was a close relationship between the baseline serum concentrations of oxHDL and HDL-C, smoking cessation decreased oxHDL and increased HDL-C. This effect on oxHDL may be associated with the effectiveness of smoking cessation.


Subject(s)
Lipoproteins, HDL , Smoking Cessation , Adult , Humans , Varenicline/therapeutic use , Cholesterol, HDL , Carbon Monoxide , Smoking
5.
BMC Complement Med Ther ; 22(1): 311, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434692

ABSTRACT

BACKGROUND: Smoking and depression are closely related and form a vicious cycle. Yokukansan (YiganSan) is a polyherbal remedy that has the effect of calming neuropsychiatric symptoms such as anger and irritation. To examine the efficacy of Yokukansan during smoking cessation (SC) therapy in smokers with depressive tendencies but without major depressive disorders requiring pharmacotherapy. METHODS: A multicenter, double-blind, randomized, placebo-controlled, parallel-group comparison trial was conducted between June 2016 and May 2020 at 12 centers of the National Hospital Organization, Japan. This trial targeted smokers who first visited the SC outpatient clinics, did not receive any pharmacological treatment at the psychiatric or psychosomatic department, and scored 39 or more on the self-rating depression scale (SDS). Participants (n = 198) were randomly assigned to either the Yokukansan or placebo groups. The trial drug was initiated with the start of the SC treatment and continued for 12 weeks. The primary outcome was the high success rate of the SC treatment, and the secondary outcomes included changes in scores of the SDS and the Profile of Mood States (POMS) instrument. RESULTS: The success rate of the SC treatment was similar between the placebo (63%) and Yokukansan (67%) groups (P = .649). The SDS scores (placebo: mean difference [MD] = -3.5, 95% confidence interval [CI][-5.8, -1.2], d = 0.42; Yokukansan: MD = -4.6, 95%CI[-6.8, -2.3], d = 0.55), and the "tension-anxiety" POMS-subscale scores (placebo: MD = -1.6, 95%CI[-2.5, -0.7], d = 0.52; Yokukansan: MD = -1.6, 95%CI[-2.9, -0.3], d = 0.36) showed significant improvement in both groups after the SC treatment. However, "depression-dejection" improved in the Yokukansan group (MD = -1.9, 95%CI[-3.1, -0.7], d = 0.44) but not in the placebo group (MD = -0.1, 95%CI[-1.0, 0.7], d = 0.04). Significant improvement in "fatigue" was noted in the Yokukansan group (MD = -2.1, 95%CI[-3.4, -0.9], d = 0.47) but not in the placebo group (MD = -0.5, 95%CI[-1.8, 0.8], d = 0.11). The time × group interaction on the improvement in "depression-dejection" was significant (P = .019). CONCLUSIONS: Yokukansan does not increase the SC treatment's success rate but has additional positive effects on the psychological states due to the SC treatment in smokers with depressive tendencies but without apparent mental disorders. TRIAL REGISTRATION: ID: UMIN000027036. Retrospectively registered at UMIN on April 18, 2017.


Subject(s)
Depressive Disorder, Major , Drugs, Chinese Herbal , Humans , Smokers , Depressive Disorder, Major/drug therapy , Drugs, Chinese Herbal/therapeutic use , Double-Blind Method
6.
J Physiol Sci ; 72(1): 26, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36229778

ABSTRACT

Microglia modulate cardiorespiratory activities during chronic hypoxia. It has not been clarified whether microglia are involved in the cardiorespiratory responses to acute hypoxia. Here we investigated this issue by comparing cardiorespiratory responses to two levels of acute hypoxia (13% O2 for 4 min and 7% O2 for 5 min) in conscious unrestrained rats before and after systemic injection of minocycline (MINO), an inhibitor of microglia activation. MINO increased blood pressure but not lung ventilation in the control normoxic condition. Acute hypoxia stimulated cardiorespiratory responses in MINO-untreated rats. MINO failed to significantly affect the magnitude of hypoxia-induced blood pressure elevation. In contrast, MINO tended to suppress the ventilatory responses to hypoxia. We conclude that microglia differentially affect cardiorespiratory regulation depending on the level of blood oxygenation. Microglia suppressively contribute to blood pressure regulation in normoxia but help maintain ventilatory augmentation in hypoxia, which underscores the dichotomy of central regulatory pathways for both systems.


Subject(s)
Microglia , Minocycline , Animals , Blood Pressure , Hypoxia/metabolism , Lung/metabolism , Microglia/metabolism , Minocycline/metabolism , Minocycline/pharmacology , Rats
7.
J UOEH ; 44(3): 249-255, 2022.
Article in English | MEDLINE | ID: mdl-36089342

ABSTRACT

Chronic intermittent hypoxia (CIH) has been used as a model to mimic nocturnal apnea, which is associated with hypertension. One of the mechanisms for hypertension in patients with nocturnal apnea is an enhancement of the plasma membrane response to acute hypoxia in carotid body glomus cells. Hypoxia is known to induce depolarization via inhibiting TWIK-related acid-sensitive K+ (TASK) channels, one type of leak K+ channels, in glomus cells. The present experiment was undertaken to immunocytochemically investigate the effects of CIH on the expression and intracellular localization of TASK1 channels and p11 that critically affect the trafficking of TASK1 to the cell surface. The expression levels of TASK1 proteins and p11 and their intracellular localization in rat carotid body glomus cells were not noticeably affected by CIH, suggesting that the enhanced membrane response to acute hypoxia is not due to an increase in surface TASK channels.


Subject(s)
Carotid Body , Hypertension , Animals , Apnea/metabolism , Carotid Body/metabolism , Hypoxia/metabolism , Rats
8.
Brain Res ; 1795: 148061, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36037880

ABSTRACT

Suvorexant (Belsomra(R)), a dual orexin receptor antagonist widely used in the treatment of insomnia, inhibits the arousal system in the brain. However, the drug's ventilatory effects have not been fully explored. This study aims to investigate the expression of orexin receptors in respiratory neurons and the effects of suvorexant on ventilation. Immunohistology of brainstem orexin receptor OX2R expression was performed in adult mice (n = 4) in (1) rostral ventral respiratory group (rVRG) neurons projecting to the phrenic nucleus (PhN) retrogradely labeled by Fluoro-Gold (FG) tracer, (2) neurons immunoreactive for paired like homeobox 2b (Phox2b) in the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN), and (3) neurons immunoreactive for neurokinin 1 receptor (NK1R) and somatostatin (SST) in the preBötzinger complex (preBötC). Additionally, we measured in vivo ventilatory responses to hyperoxic hypercapnia (5% CO2) and hypoxia (10% O2) before and after suvorexant pretreatment (10 and cumulative 100 mg/kg) in unrestrained mice (n = 10) in a body plethysmograph. We found the OX2R immunoreactive materials in pFRG/RTN Phox2b and preBötC NK1R/SST immunoreactive neurons but not in FG-labeled rVRG neurons, which suggests the involvement of orexin in respiratory control. Further, suvorexant expressly suppressed the hypercapnic ventilatory augmentation, otherwise unaffecting ventilation. Central orexin is involved in shaping the hypercapnic ventilatory chemosensitivity. Suppression of hypercapnic ventilatory augmentation by the orexin receptor antagonist suvorexant calls for caution in its use in pathologies that may progress to hypercapnic respiratory failure, or sleep-disordered breathing. Clinical trials are required to explore the role of targeted pharmacological inhibition of orexin in ventilatory pathologies.


Subject(s)
Hypercapnia , Orexin Receptor Antagonists , Animals , Azepines , Carbon Dioxide/metabolism , Hypercapnia/metabolism , Mice , Orexin Receptor Antagonists/pharmacology , Orexin Receptors , Orexins , Receptors, Neurokinin-1/metabolism , Somatostatin , Transcription Factors/metabolism , Triazoles
9.
Sci Adv ; 8(12): eabm1444, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333571

ABSTRACT

As blood oxygenation decreases (hypoxemia), mammals mount cardiorespiratory responses, increasing oxygen to vital organs. The carotid bodies are the primary oxygen chemoreceptors for breathing, but sympathetic-mediated cardiovascular responses to hypoxia persist in their absence, suggesting additional high-fidelity oxygen sensors. We show that spinal thoracic sympathetic preganglionic neurons are excited by hypoxia and silenced by hyperoxia, independent of surrounding astrocytes. These spinal oxygen sensors (SOS) enhance sympatho-respiratory activity induced by CNS asphyxia-like stimuli, suggesting they bestow a life-or-death advantage. Our data suggest the SOS use a mechanism involving neuronal nitric oxide synthase 1 (NOS1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). We propose NOS1 serves as an oxygen-dependent sink for NADPH in hyperoxia. In hypoxia, NADPH catabolism by NOS1 decreases, increasing availability of NADPH to NOX and launching reactive oxygen species-dependent processes, including transient receptor potential channel activation. Equipped with this mechanism, SOS are likely broadly important for physiological regulation in chronic disease, spinal cord injury, and cardiorespiratory crisis.

10.
Neurosci Lett ; 771: 136421, 2022 02 06.
Article in English | MEDLINE | ID: mdl-34968723

ABSTRACT

Astrocytes are thought to play a crucial role in providing structure to the spinal cord and maintaining efficient synaptic function and metabolism because their fine processes envelop the synapses of neurons and form many neuronal networks within the central nervous system (CNS). To investigate whether putative astrocytes and putative neurons distributed on the ventral horn play a role in the modulation of lumbar locomotor central pattern generator (CPG) networks, we used extracellular recording and optical imaging techniques and recorded the neural output from the left L5 ventral root and the calcium activity of putative astrocytes and neurons in the L5 ventral horn at the same time when activating an isolated L1-L5 spinal cord preparation from rats aged 0-2 days. Optical measurements detected cells that showed a fluorescence intensity change under all experimental conditions, namely, (1) 5-HT + NMDA, (2) TTX, and (3) TTX + Low K+. These cells were semiautomatically identified using an in-house MATLAB-based program, as putative astrocytes and neurons according to the cell classification, i.e., increased or decreased fluorescence intensity change (ΔF/F0), and subjective judgment based on their soma size. Coherence and its phase were calculated according to the calcium activity of the putative astrocytes and putative neurons, and neural output was calculated during fictive locomotion with in-house MATLAB-based programs. We found that the number of putative astrocytes activated by applying low K+ tends not to differ from that activated by applying the protease-activated receptor 1 (PAR1) selective agonist TFLLR-NH2 (TFLLR). Moreover, the calcium activity of several putative astrocytes and neurons synchronized with locomotor-like activity at a frequency range below 0.5 Hz and the time lag between peaks of cellular calcium activity and locomotor-like activity ranged from -1000 to + 1000 ms. These findings presumably indicates that these putative astrocytes and neurons in the left L5 ventral horn require -1000 to + 1000 ms to communicate with lumbar CPG networks and maintain efficient synaptic function and metabolism in activated lumbar CPG networks. This finding suggests the possibility that putative astrocytic and neuronal cells in the L5 ventral horn contribute to generating the rhythms and patterns of locomotor-like activity by activated CPG networks in the first to fifth lumbar spinal cord.


Subject(s)
Anterior Horn Cells/metabolism , Astrocytes/metabolism , Calcium Signaling , Central Pattern Generators/metabolism , Locomotion , Animals , Anterior Horn Cells/drug effects , Anterior Horn Cells/physiology , Astrocytes/drug effects , Astrocytes/physiology , Central Pattern Generators/drug effects , Central Pattern Generators/physiology , N-Methylaspartate/metabolism , Oligopeptides/pharmacology , Potassium/metabolism , Rats , Rats, Wistar , Serotonin/metabolism , Tetrodotoxin/pharmacology
11.
Front Physiol ; 12: 757731, 2021.
Article in English | MEDLINE | ID: mdl-34690820

ABSTRACT

Acute hypoxia increases ventilation. After cessation of hypoxia loading, ventilation decreases but remains above the pre-exposure baseline level for a time. However, the mechanism of this post-hypoxic persistent respiratory augmentation (PHRA), which is a short-term potentiation of breathing, has not been elucidated. We aimed to test the hypothesis that astrocytes are involved in PHRA. To this end, we investigated hypoxic ventilatory responses by whole-body plethysmography in unanesthetized adult mice. The animals breathed room air, hypoxic gas mixture (7% O2, 93% N2) for 2min, and again room air for 10min before and after i.p. administration of low (100mg/kg) and high (300mg/kg) doses of arundic acid (AA), an astrocyte inhibitor. AA suppressed PHRA, with the high dose decreasing ventilation below the pre-hypoxic level. Further, we investigated the role of the astrocytic TRPA1 channel, a putative ventilatory hypoxia sensor, in PHRA using astrocyte-specific Trpa1 knockout (asTrpa1 -/-) and floxed Trpa1 (Trpa1 f/f) mice. In both Trpa1 f/f and asTrpa1 -/- mice, PHRA was noticeable, indicating that the astrocyte TRPA1 channel was not directly involved in PHRA. Taken together, these results indicate that astrocytes mediate the PHRA by mechanisms other than TRPA1 channels that are engaged in hypoxia sensing.

12.
Sensors (Basel) ; 21(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34451079

ABSTRACT

In the field of respiratory clinical practice, the importance of measuring carbon dioxide (CO2) concentrations cannot be overemphasized. Within the body, assessment of the arterial partial pressure of CO2 (PaCO2) has been the gold standard for many decades. Non-invasive assessments are usually predicated on the measurement of CO2 concentrations in the air, usually using an infrared analyzer, and these data are clearly important regarding climate changes as well as regulations of air quality in buildings to ascertain adequate ventilation. Measurements of CO2 production with oxygen consumption yield important indices such as the respiratory quotient and estimates of energy expenditure, which may be used for further investigation in the various fields of metabolism, obesity, sleep disorders, and lifestyle-related issues. Measures of PaCO2 are nowadays performed using the Severinghaus electrode in arterial blood or in arterialized capillary blood, while the same electrode system has been modified to enable relatively accurate non-invasive monitoring of the transcutaneous partial pressure of CO2 (PtcCO2). PtcCO2 monitoring during sleep can be helpful for evaluating sleep apnea syndrome, particularly in children. End-tidal PCO2 is inferior to PtcCO2 as far as accuracy, but it provides breath-by-breath estimates of respiratory gas exchange, while PtcCO2 reflects temporal trends in alveolar ventilation. The frequency of monitoring end-tidal PCO2 has markedly increased in light of its multiple applications (e.g., verify endotracheal intubation, anesthesia or mechanical ventilation, exercise testing, respiratory patterning during sleep, etc.).


Subject(s)
Blood Gas Monitoring, Transcutaneous , Pulmonary Medicine , Carbon Dioxide , Child , Humans , Partial Pressure , Respiration, Artificial
13.
Front Physiol ; 12: 645904, 2021.
Article in English | MEDLINE | ID: mdl-33841182

ABSTRACT

It is supposed that the nucleus of the solitary tract (NTS) in the dorsal medulla includes gas sensor cells responsive to hypercapnia or hypoxia in the central nervous system. In the present study, we analyzed cellular responses to hypercapnia and hypoxia in the NTS region of newborn rat in vitro preparation. The brainstem and spinal cord were isolated from newborn rat (P0-P4) and were transversely cut at the level of the rostral area postrema. To detect cellular responses, calcium indicator Oregon Green was pressure-injected into the NTS just beneath the cut surface of either the caudal or rostral block of the medulla, and the preparation was superfused with artificial cerebrospinal fluid (25-26°C). We examined cellular responses initially to hypercapnic stimulation (to 8% CO2 from 2% CO2) and then to hypoxic stimulation (to 0% O2 from 95% O2 at 5% CO2). We tested these responses in standard solution and in two different synapse blockade solutions: (1) cocktail blockers solution including bicuculline, strychnine, NBQX and MK-801 or (2) TTX solution. At the end of the experiments, the superfusate potassium concentration was lowered to 0.2 from 3 mM to classify recorded cells into neurons and astrocytes. Excitation of cells was detected as changes of fluorescence intensity with a confocal calcium imaging system. In the synaptic blockade solutions (cocktail or TTX solution), 7.6 and 8% of the NTS cells responded to hypercapnic and hypoxic stimulation, respectively, and approximately 2% of them responded to both stimulations. Some of these cells responded to low K+, and they were classified into astrocytes comprising 43% hypercapnia-sensitive cells, 56% hypoxia-sensitive cells and 54% of both stimulation-sensitive cells. Of note, 49% of the putative astrocytes identified by low K+ stimulation were sensitive to hypercapnia, hypoxia or both. In the presence of a glia preferential blocker, 5 mM fluoroacetate (plus 0.5 µM TTX), the percentage of hypoxia-sensitive cells was significantly reduced compared to those of all other conditions. This is the first study to reveal that the NTS includes hypercapnia and hypoxia dual-sensitive cells. These results suggest that astrocytes in the NTS region could act as a central gas sensor.

14.
Transl Res ; 233: 127-143, 2021 07.
Article in English | MEDLINE | ID: mdl-33691194

ABSTRACT

Ophiocordyceps sinensis (OCS), an entomopathogenic fungus, is known to exert antiproliferative and antitissue remodeling effects. Vascular remodeling and vasoconstriction play critical roles in the development of pulmonary hypertension (PH). The therapeutic potential of OCS for PH was investigated using rodent PH models, and cultured pulmonary artery endothelial and smooth muscle cells (PAECs and PASMCs), with a focus on the involvement of TRPM7. OCS ameliorated the development of PH, right ventricular hypertrophy and dysfunction in the monocrotaline-induced PH rats. The genetic knockout of TRPM7 attenuated the development of PH in mice with monocrotaline pyrrole-induced PH. TRPM7 was associated with medial hypertrophy and the plexiform lesions in rats and humans with PH. OCS suppressed proliferation of PASMCs derived from the PH patients. Ethanol extracts of OCS inhibited TRPM7-like current, TGF-ß2-induced endothelial-mesenchymal transition, IL-6-induced STAT3 phosphorylation, and PDGF-induced Akt phosphorylation in PAECs or PASMCs. These inhibitory effects were recapitulated by either siRNA-mediated TRPM7 knockdown or treatment with TRPM7 antagonist FTY-720. OCS and FTY-720 induced vasorelaxation in the isolated normal human pulmonary artery. As a result, the present study proposes the therapeutic potential of OCS for the treatment of PH. The inhibition of TRPM7 is suggested to underlie the therapeutic effect of OCS.


Subject(s)
Cordyceps/physiology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/therapy , TRPM Cation Channels/antagonists & inhibitors , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Fingolimod Hydrochloride/pharmacology , Gene Knockdown Techniques , Humans , Hypertension, Pulmonary/pathology , Male , Medicine, Chinese Traditional , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics , TRPM Cation Channels/physiology , Translational Research, Biomedical , Vasodilation
16.
Respir Investig ; 59(1): 66-80, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33277231

ABSTRACT

Dyspnea is defined as a subjective experience of breathing discomfort that consists of qualitatively distinct sensations that vary in intensity. It is a common symptom among patients with respiratory diseases that reduces daily activities, induces deconditioning, and is self-perpetuating. Although clinical interventions are needed to reduce dyspnea, its underlying mechanism is poorly understood depending on the intertwined peripheral and central neural mechanisms as well as emotional factors. Nonetheless, experimental and clinical observations suggest that dyspnea results from dissociation or a mismatch between the intended respiratory motor output set caused by the respiratory neuronal network in the lower brainstem and the ventilatory output accomplished. The brain regions responsible for detecting the mismatch between the two are not established. The mechanism underlying the transmission of neural signals for dyspnea to higher sensory brain centers is not known. Further, information from central and peripheral chemoreceptors that control the milieu of body fluids is summated at higher brain centers, which modify dyspneic sensations. The mental status also affects the sensitivity to and the threshold of dyspnea perception. The currently used methods for relieving dyspnea are not necessarily fully effective. The search for more effective therapy requires further insights into the pathophysiology of dyspnea.


Subject(s)
Brain Stem/physiology , Dyspnea/etiology , Dyspnea/physiopathology , Sensation , Dyspnea/psychology , Dyspnea/therapy , Emotions , Female , Humans , Hypoxia , Male , Nerve Net/physiology , Respiratory Physiological Phenomena , Sensory Receptor Cells/physiology
17.
Front Physiol ; 11: 583735, 2020.
Article in English | MEDLINE | ID: mdl-33192596

ABSTRACT

Obstructive sleep apnea (OSA) patients are at risk for increased blood pressure and carotid intima-media thickness (IMT), with pulmonary hypertension and right-sided heart failure potentially developing as well. Chronic intermittent hypoxia (IH) has been used as an OSA model in animals, but its effects on vascular beds have not been evaluated using objective unbiased tools. Previously published and current experimental data in mice exposed to IH were evaluated for IMT in aorta and pulmonary artery (PA) after IH with or without normoxic recovery using software for meta-analysis, Review Manager 5. Because IMT data reports on PA were extremely scarce, atherosclerotic area percentage from lumen data was also evaluated. IH significantly increased IMT parameters in both aorta and PA as illustrated by Forest plots (P < 0.01), which also confirmed that IMT values after normoxic recovery were within the normal range in both vascular beds. One-sided scarce lower areas in Funnel Plots were seen for both aorta and PA indicating the likelihood of significant publication bias. Forest and Funnel plots, which provide unbiased assessments of published and current data, suggest that IH exposures may induce IMT thickening that may be reversed by normoxic recovery in both aorta and PA. In light of the potential likelihood of publication bias, future studies are needed to confirm or refute the findings. In conclusion, OSA may induce IMT thickening (e.g., aorta and/or PA), but the treatment (e.g., nasal continuous positive airway pressure) will likely lead to improvements in such findings.

18.
Sci Rep ; 10(1): 13325, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770006

ABSTRACT

Psychological stress activates the hypothalamus, augments the sympathetic nervous output, and elevates blood pressure via excitation of the ventral medullary cardiovascular regions. However, anatomical and functional connectivity from the hypothalamus to the ventral medullary cardiovascular regions has not been fully elucidated. We investigated this issue by tract-tracing and functional imaging in rats. Retrograde tracing revealed the rostral ventrolateral medulla was innervated by neurons in the ipsilateral dorsomedial hypothalamus (DMH). Anterograde tracing showed DMH neurons projected to the ventral medullary cardiovascular regions with axon terminals in contiguity with tyrosine hydroxylase-immunoreactive neurons. By voltage-sensitive dye imaging, dynamics of ventral medullary activation evoked by electrical stimulation of the DMH were analyzed in the diencephalon-lower brainstem-spinal cord preparation of rats. Although the activation of the ventral medulla induced by single pulse stimulation of the DMH was brief, tetanic stimulation caused activation of the DMH sustained into the post-stimulus phase, resulting in delayed recovery. We suggest that prolonged excitation of the DMH, which is triggered by tetanic electrical stimulation and could also be triggered by psychological stress in a real life, induces further prolonged excitation of the medullary cardiovascular networks, and could contribute to the pathological elevation of blood pressure. The connectivity from the DMH to the medullary cardiovascular networks serves as a chronological amplifier of stress-induced sympathetic excitation. This notion will be the anatomical and pathophysiological basis to understand the mechanisms of stress-induced sustained augmentation of sympathetic activity.


Subject(s)
Autonomic Pathways/physiology , Dorsomedial Hypothalamic Nucleus/physiology , Medulla Oblongata/physiology , Neurons/metabolism , Sympathetic Nervous System/physiology , Animals , Autonomic Pathways/anatomy & histology , Dorsomedial Hypothalamic Nucleus/anatomy & histology , Male , Medulla Oblongata/anatomy & histology , Neurons/cytology , Rats , Rats, Wistar , Sympathetic Nervous System/anatomy & histology
19.
Curr Biol ; 30(17): 3378-3396.e7, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32679097

ABSTRACT

Hypoxia sensors are essential for regulating local oxygen (O2) homeostasis within the body. This is especially pertinent within the CNS, which is particularly vulnerable to O2 deprivation due to high energetic demand. Here, we reveal hypoxia-monitoring function exerted by astrocytes through an O2-regulated protein trafficking mechanism within the CNS. Strikingly, cultured mouse astrocytes isolated from the parafacial respiratory group (pFRG) and retrotrapezoid nucleus (RTN) region are capable of rapidly responding to moderate hypoxia via the sensor cation channel transient receptor potential (TRP) A1 but, unlike multimodal sensory neurons, are inert to hyperoxia and other TRPA1 activators (carbon dioxide, electrophiles, and oxidants) in normoxia. Mechanistically, O2 suppresses TRPA1 channel activity by protein internalization via O2-dependent proline hydroxylation and subsequent ubiquitination by an E3 ubiquitin ligase, NEDD4-1 (neural precursor cell-expressed developmentally down-regulated protein 4). Hypoxia inhibits this process and instantly accumulates TRPA1 proteins at the plasma membrane, inducing TRPA1-mediated Ca2+ influx that triggers ATP release from pFRG/RTN astrocytes, potentiating respiratory center activity. Furthermore, astrocyte-specific Trpa1 disruption in a mouse brainstem-spinal cord preparation impedes the amplitude augmentation of the central autonomic respiratory output during hypoxia. Thus, reversible coupling of the TRPA1 channels with O2-dependent protein translocation allows astrocytes to act as acute hypoxia sensors in the medullary respiratory center.


Subject(s)
Astrocytes/pathology , Dopaminergic Neurons/pathology , Endocytosis , Hypoxia/physiopathology , Oxygen/metabolism , TRPA1 Cation Channel/physiology , Adenosine Triphosphate/metabolism , Animals , Astrocytes/metabolism , Dopaminergic Neurons/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases/metabolism , Protein Transport
20.
BMC Pulm Med ; 20(1): 151, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32471394

ABSTRACT

BACKGROUND: Usual clinical practice for arterial blood gas analysis (BGA) in conscious patients involves a one-time arterial puncture to be performed after a resting period of 20-30 min. The aim of this study was to evaluate the use of transcutaneous BGA for estimating this gold standard arterial BGA. METHODS: Spontaneously breathing Asian adults (healthy volunteers and respiratory patients) were enrolled (n = 295). Transcutaneous PO2 (PtcO2) and PCO2 (PtcCO2) were monitored using a transcutaneous monitor (TCM4, Radiometer Medical AsP, Denmark) with sensors placed on the chest, forearm, earlobe or forehead. Transcutaneous BGA at 1-min intervals was compared with arterial BGA at 30 min. Reasonable steps to find severe hypercapnia with PaCO2 > 50 mmHg were evaluated. RESULTS: Sensors on the chest and forearm were equally preferred and used because of small biases (n = 272). The average PCO2 bias was close to 0 mmHg at 4 min, and was almost constant (4-5 mmHg) with PtcCO2 being higher than PaCO2 at ≥8 min. The limit of agreement for PCO2 narrowed over time: ± 13.6 mmHg at 4 min, ± 7.5 mmHg at 12-13 min, and ± 6.3 mmHg at 30 min. The limit of agreement for PO2 also narrowed over time (± 23.1 mmHg at 30 min). Subgroup analyses showed that the PaCO2 and PaO2 levels, gender, and younger age significantly affected the biases. All hypercapnia subjects with PaCO2 > 50 mmHg (n = 13) showed PtcCO2 ≥ 50 mmHg for until 12 min. CONCLUSIONS: Although PtcCO2 is useful, it cannot completely replace PaCO2 because PCO2 occasionally showed large bias. On the other hand, the prediction of PaO2 using PtcO2 was unrealistic in Asian adults. PtcCO2 ≥ 50 mmHg for until 12 min can be used as a screening tool for severe hypercapnia with PaCO2 > 50 mmHg.


Subject(s)
Blood Gas Monitoring, Transcutaneous/methods , Carbon Dioxide/blood , Hypercapnia/blood , Monitoring, Physiologic/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Hypercapnia/diagnosis , Japan , Male , Middle Aged , Partial Pressure , Reference Standards , Respiration , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...