Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Reprod Biomed Online ; 46(3): 491-501, 2023 03.
Article in English | MEDLINE | ID: mdl-36737274

ABSTRACT

RESEARCH QUESTION: Can discarded embryos at blastocyst stage, donated to research because of genetic abnormalities and poor morphological quality, become a reliable source of human embryonic stem cell (HESC) lines? DESIGN: This study was consecutively conducted with 23 discarded embryos that were donated to research between February 2020 and April 2021. All embryos, except one, were morphologically evaluated and underwent trophectoderm biopsy for preimplantation genetic testing using next-generation sequencing (NGS), and then vitrified. After warming, the embryos were placed in appropriate culture conditions for the generation of HESCs, which was functionally assessed with immunofluorescence and flow cytometry for pluripotency capacity and spontaneous in-vitro differentiation. Cytogenetic assessment of the HESC was conducted with multiplex ligation-dependent probe amplification, and micro array comparative genomic hybridization. RESULTS: From the 23 embryos initially included, 17 survived warming, and 16 of them presented viability. Overall, the embryos presented poor morphological quality after warming. Only the previously untested embryo was capable of generating a new HESC line. Further characterization of this line revealed fully functional, euploid HESCs with preserved pluripotency, becoming a useful resource for research into human development and therapeutic investigation. CONCLUSIONS: None of the donated blastocysts with poor morphological quality in association with genetic abnormalities detected by NGS had the capacity for further in-vitro expansion to originate pluripotent HESC lines. This finding seems to provide extra support to genetic counselling on the suitability of this type of embryo for clinical use.


Subject(s)
Embryo, Mammalian , Preimplantation Diagnosis , Humans , Female , Pregnancy , Comparative Genomic Hybridization , Blastocyst , Genetic Testing , Embryonic Stem Cells , Aneuploidy , Embryo Culture Techniques
2.
Hum Mol Genet ; 29(9): 1465-1475, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32280986

ABSTRACT

Amyotrophic lateral sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as 'severe' and 'mild' from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy number variation and whole exome sequencing analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N = 5) and controls (N = 3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients' iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to the endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to the ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER-mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Mitochondria/genetics , Nerve Degeneration/genetics , Vesicular Transport Proteins/genetics , Aged , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Cell Differentiation/genetics , Endoplasmic Reticulum/genetics , Female , Gene Expression Regulation/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Mitochondria/metabolism , Motor Neurons/metabolism , Motor Neurons/pathology , Nerve Degeneration/pathology , Oxidative Stress/genetics , RNA-Seq , Vesicular Transport Proteins/deficiency
3.
Hum Mol Genet, v. 29, n. 9, p. 1465-1475, abr. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3007

ABSTRACT

Amyotrophic Lateral Sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as ‘severe’ and ‘mild’ from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy Number Variation (CNV) and Whole Exome Sequencing (WES) analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N=5) and controls (N=3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients’ iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls, and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER–mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.

4.
Hum. Mol. Genet. ; 29(9): 1465–1475, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17603

ABSTRACT

Amyotrophic Lateral Sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as ‘severe’ and ‘mild’ from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy Number Variation (CNV) and Whole Exome Sequencing (WES) analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N=5) and controls (N=3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients’ iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls, and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER–mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.

5.
Front Cell Dev Biol ; 7: 255, 2019.
Article in English | MEDLINE | ID: mdl-31824942

ABSTRACT

Graft versus host disease (GVHD) is a common condition in patients subjected to allogeneic hematopoietic stem cell transplantation (HSCT). The immune cells derived from the grafted stem cells attack recipient's tissues, including those from the skin, liver, eyes, mouth, lungs, gastrointestinal tract, neuromuscular system, and genitourinary tract, may lead to severe morbidity and mortality. Acute GVHD can occur within few weeks after the allogeneic cells have engrafted in the recipient while chronic GVHD may occur any time after transplant, typically within months. Although treatable by systemic corticosteroid administration, effective responses are not achieved for a significant proportion of patients, a condition associated with poor prognosis. The use of multipotent mesenchymal stromal cells (MSCs) as an alternative to treat steroid-refractory GVHD had improved last decade, but the results are still controversial. Some studies have shown improvement in the life quality of patients after MSCs treatment, while others have found no significant benefits. In addition to variations in trial design, discrepancies in protocols for MSCs isolation, characterization, and ex vivo manipulation, account for inconsistent clinical results. In this review, we discuss the immunomodulatory properties supporting the therapeutic use of MSCs in GVHD and contextualize the main clinical findings of recent trials using these cells. Critical parameters for the clinical translation of MSCs, including consistent production of MSCs according to Good Manufacturing Practices (GMPs) and informative potency assays for product quality control (QC), are addressed.

6.
Cancer Res ; 78(12): 3363-3374, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29700002

ABSTRACT

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKVBR) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKVBR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKVBR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKVBR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKVBR-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKVBR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR.


Subject(s)
Central Nervous System Neoplasms/therapy , Neoplasms, Germ Cell and Embryonal/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Zika Virus/physiology , Animals , Brain/cytology , Central Nervous System Neoplasms/mortality , Central Nervous System Neoplasms/pathology , Humans , Injections, Intraventricular , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Germ Cell and Embryonal/mortality , Neoplasms, Germ Cell and Embryonal/pathology , Neural Stem Cells/pathology , Survival Analysis , Treatment Outcome , Virus Shedding , Xenograft Model Antitumor Assays
7.
Mol Neurobiol ; 55(7): 5962-5975, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29128905

ABSTRACT

Several methods have been used to study the neuropathogenesis of Down syndrome (DS), such as mouse aneuploidies, post mortem human brains, and in vitro cell culture of neural progenitor cells. More recently, induced pluripotent stem cell (iPSC) technology has offered new approaches in investigation, providing a valuable tool for studying specific cell types affected by DS, especially neurons and astrocytes. Here, we investigated the role of astrocytes in DS developmental disease and the impact of the astrocyte secretome in neuron mTOR signaling and synapse formation using iPSC derived from DS and wild-type (WT) subjects. We demonstrated for the first time that DS neurons derived from hiPSC recapitulate the hyperactivation of the Akt/mTOR axis observed in DS brains and that DS astrocytes may play a key role in this dysfunction. Our results bear out that 21 trisomy in astrocytes contributes to neuronal abnormalities in addition to cell autonomous dysfunctions caused by 21 trisomy in neurons. Further research in this direction will likely yield additional insights, thereby improving our understanding of DS and potentially facilitating the development of new therapeutic approaches.


Subject(s)
Astrocytes/pathology , Down Syndrome/pathology , Induced Pluripotent Stem Cells/pathology , Neurogenesis , Neurons/pathology , Signal Transduction , Synapses/pathology , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis , Astrocytes/metabolism , Cell Proliferation , Coculture Techniques , Humans , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurons/metabolism , Spheroids, Cellular/pathology
8.
Cancer Res, v. 78, n. 78, p. 3363-3374, jun. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2491

ABSTRACT

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV(BR)) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV(BR) was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV(BR) in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV(BR). furthermore, modulation of Wnt signaling pathway significantly affected ZIKV(BR)-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV(BR) could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.

9.
Cancer Res. ; 78(12): p. 3363-3374, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15210

ABSTRACT

Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV(BR)) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV(BR) was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV(BR) in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV(BR). furthermore, modulation of Wnt signaling pathway significantly affected ZIKV(BR)-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV(BR) could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.

10.
Cancer Sci ; 106(9): 1188-95, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26250335

ABSTRACT

In medulloblastoma, abnormal expression of pluripotency factors such as LIN28 and OCT4 has been correlated with poor patient survival. The miR-302/367 cluster has also been shown to control self-renewal and pluripotency in human embryonic stem cells and induced pluripotent stem cells, but there is limited, mostly correlational, information about these pluripotency-related miRNA in cancer. We evaluated whether aberrant expression of such miRNA could affect tumor cell behavior and stem-like traits, thereby contributing to the aggressiveness of medulloblastoma cells. Basal expression of primary and mature forms of miR-367 were detected in four human medulloblastoma cell lines and expression of the latter was found to be upregulated upon enforced expression of OCT4A. Transient overexpression of miR-367 significantly enhanced tumor features typically correlated with poor prognosis; namely, cell proliferation, 3-D tumor spheroid cell invasion and the ability to generate neurosphere-like structures enriched in CD133 expressing cells. A concurrent downregulation of the miR-367 cancer-related targets RYR3, ITGAV and RAB23, was also detected in miR-367-overexpressing cells. Overall, these findings support the pro-oncogenic activity of miR-367 in medulloblastoma and reveal a possible mechanism contributing to tumor aggressiveness, which could be further explored to improve patient stratification and treatment of this important type of pediatric brain cancer.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Proliferation/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , MicroRNAs/genetics , AC133 Antigen , Antigens, CD/genetics , Cell Line, Tumor , Down-Regulation/genetics , Glycoproteins/genetics , Humans , Octamer Transcription Factor-3/genetics , Peptides/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Spheroids, Cellular/pathology , Up-Regulation/genetics , rab GTP-Binding Proteins/genetics
11.
Oncol Lett ; 8(4): 1487-1491, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25202354

ABSTRACT

In a previous genome-wide expression profiling study, we identified E2F2 as a hyperexpressed gene in stem-like cells of distinct glioblastoma multiforme (GBM) specimens. Since the encoded E2F2 transcription factor has been implicated in both tumor suppression and tumor development, we conducted a functional study to investigate the pertinence of E2F2 to human gliomagenesis. E2F2 expression was knocked down by transfecting U87MG cells with plasmids carrying a specific silencing shRNA. Upon E2F2 silencing, in vitro cell proliferation was significantly reduced, as indicated by a time-course analysis of viable tumor cells. Anchorage-independent cell growth was also significantly inhibited after E2F2 silencing, based on cell colony formation in soft agar. Subcutaneous and orthotopic xenograft models of GBM in nude mice also indicated inhibition of tumor development in vivo, following E2F2 silencing. As expression of the E2F2 gene is associated with glioblastoma stem cells and is involved in the transformation of human astrocytes, the present findings suggest that E2F2 is involved in gliomagenesis and could be explored as a potential therapeutic target in malignant gliomas.

13.
Stem Cell Rev Rep ; 9(1): 93-109, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22664740

ABSTRACT

The combination of cell therapy with growth factors could be a useful approach to treat progressive muscular dystrophies. Here, we demonstrate, for the first time, that IGF-1 considerably enhances the myogenesis of human umbilical cord (UC) mesenchymal stromal cells (MSCs) in vitro and that IGF-1 enhances interaction and restoration of dystrophin expression in co-cultures of MSCs and muscle cells from Duchenne patients. In vivo studies showed that human MSCs were able to reach the skeletal muscle of LAMA2(dy/2j) dystrophic mice, through systemic delivery, without immunosuppression. Moreover, we showed, for the first time, that IGF-1 injected systemically together with MSCs markedly reduced muscle inflammation and fibrosis, and significantly improved muscle strength in dystrophic mice. Our results suggest that a combined treatment with IGF-1 and MSCs enhances efficiency of muscle repair and, therefore, should be further considered as a potential therapeutic approach in muscular dystrophies.


Subject(s)
Insulin-Like Growth Factor I/pharmacology , Laminin/metabolism , Mesenchymal Stem Cell Transplantation , Muscle Development/drug effects , Muscular Dystrophy, Animal/therapy , Animals , Cell Differentiation/drug effects , Cell- and Tissue-Based Therapy , Cells, Cultured , Coculture Techniques , Dystrophin/biosynthesis , Fibrosis/therapy , Humans , Inflammation/therapy , Laminin/genetics , Mesenchymal Stem Cells , Mice , Muscle Cells/cytology , Muscle Cells/metabolism , Muscle Strength/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Umbilical Cord/cytology
14.
J Orthop Sci ; 16(4): 458-66, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21691740

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most frequent bone tumor in children and adolescents. Tumor antigens are encoded by genes that are expressed in many types of solid tumors but are silent in normal tissues, with the exception of placenta and male germ-line cells. It has been proposed that antigen tumors are potential tumor markers. OBJECTIVES: The premise of this study is that the identification of novel OS-associated transcripts will lead to a better understanding of the events involved in OS pathogenesis and biology. METHODS: We analyzed the expression of a panel of seven tumor antigens in OS samples to identify possible tumor markers. After selecting the tumor antigen expressed in most samples of the panel, gene expression profiling was used to identify osteosarcoma-associated molecular alterations. A microarray was employed because of its ability to accurately produce comprehensive expression profiles. RESULTS: PRAME was identified as the tumor antigen expressed in most OS samples; it was detected in 68% of the cases. Microarray results showed differences in expression for genes functioning in cell signaling and adhesion as well as extracellular matrix-related genes, implying that such tumors could indeed differ in regard to distinct patterns of tumorigenesis. CONCLUSIONS: The hypothesis inferred in this study was gathered mostly from available data concerning other kinds of tumors. There is circumstantial evidence that PRAME expression might be related to distinct patterns of tumorigenesis. Further investigation is needed to validate the differential expression of genes belonging to tumorigenesis-related pathways in PRAME-positive and PRAME-negative tumors.


Subject(s)
Antigens, Neoplasm/genetics , Bone Neoplasms/genetics , Gene Expression Profiling , Osteosarcoma/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Young Adult
15.
BMC Genomics ; 11: 230, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20377889

ABSTRACT

BACKGROUND: Uncovering the molecular mechanisms involved in epileptogenesis is critical to better understand the physiopathology of epilepsies and to help develop new therapeutic strategies for this prevalent and severe neurological condition that affects millions of people worldwide. RESULTS: Changes in the transcriptome of hippocampal cells from rats subjected to the pilocarpine model of epilepsy were evaluated by microarrays covering 34,000 transcripts representing all annotated rat genes to date. Using such genome-wide approach, differential expression of nearly 1,400 genes was detected during the course of epileptogenesis, from the early events post status epilepticus (SE) to the onset of recurrent spontaneous seizures. Most of these genes are novel and displayed an up-regulation after SE. Noteworthy, a group of 128 genes was found consistently hyper-expressed throughout epileptogenesis, indicating stable modulation of the p38MAPK, Jak-STAT, PI3K, and mTOR signaling pathways. In particular, up-regulation of genes from the TGF-beta and IGF-1 signaling pathways, with opposite effects on neurogenesis, correlate with the physiopathological changes reported in humans. CONCLUSIONS: A consistent regulation of genes functioning in intracellular signal transduction regulating neurogenesis have been identified during epileptogenesis, some of which with parallel expression patterns reported in patients with epilepsy, strengthening the link between these processes and development of epilepsy. These findings reveal dynamic molecular changes occurring in the hippocampus that may serve as a starting point for designing alternative therapeutic strategies to prevent the development of epilepsy after acquired brain insults.


Subject(s)
Epilepsy/genetics , Hippocampus/chemistry , Animals , Gene Expression , Gene Expression Profiling , Genomics , Hippocampus/metabolism , Male , Pilocarpine/metabolism , Rats , Rats, Wistar , Signal Transduction
16.
J Stem Cells ; 5(3): 103-11, 2010.
Article in English | MEDLINE | ID: mdl-22314826

ABSTRACT

Isolation of highly tumorigenic stem-like cells from human glioblastoma specimens and cell lines has been focusing on their neural stem cells properties or capacity to efflux fluorescent dyes. Here, we report that, under standard culture conditions, human glioblastoma cells of the U87MG cell line display a predominant mesenchymal phenotype and share some of the in vitro properties of mesenchymal stem cells. Moreover, these cells were capable of forming tumors in immunocompetent rats. Infiltrative intracranial tumors could be detected 15 to 30 days post-stereotaxic cell injection within the motor cortex. Tumors were comprised by pleomorphic and mitotically active cells and displayed necrotic and hemorrhagic foci, which are common features of human glioblastomas. This rather unexpected in vivo tumorigenesis in the absence of immune suppression more closely mimics the physiological milieu encountered by tumor cells and could be explored as a xenograft orthotopic model of human glioblastomas to address new therapeutic approaches, particularly those involving immune effector mechanisms.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Immunocompetence , Mesenchymal Stem Cells/pathology , Animals , Cell Differentiation , Cell Shape , Chondrogenesis/physiology , Humans , Immunocompetence/physiology , Male , Mesenchymal Stem Cells/physiology , Neoplasm Transplantation , Osteogenesis/physiology , Rats , Rats, Wistar , Transplantation, Heterologous , Tumor Cells, Cultured
17.
BMC Mol Biol ; 10: 17, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19257903

ABSTRACT

BACKGROUND: Considering the broad variation in the expression of housekeeping genes among tissues and experimental situations, studies using quantitative RT-PCR require strict definition of adequate endogenous controls. For glioblastoma, the most common type of tumor in the central nervous system, there was no previous report regarding this issue. RESULTS: Here we show that amongst seven frequently used housekeeping genes TBP and HPRT1 are adequate references for glioblastoma gene expression analysis. Evaluation of the expression levels of 12 target genes utilizing different endogenous controls revealed that the normalization method applied might introduce errors in the estimation of relative quantities. Genes presenting expression levels which do not significantly differ between tumor and normal tissues can be considered either increased or decreased if unsuitable reference genes are applied. Most importantly, genes showing significant differences in expression levels between tumor and normal tissues can be missed. We also demonstrated that the Holliday Junction Recognizing Protein, a novel DNA repair protein over expressed in lung cancer, is extremely over-expressed in glioblastoma, with a median change of about 134 fold. CONCLUSION: Altogether, our data show the relevance of previous validation of candidate control genes for each experimental model and indicate TBP plus HPRT1 as suitable references for studies on glioblastoma gene expression.


Subject(s)
Brain Neoplasms/genetics , Gene Expression , Glioblastoma/genetics , Reverse Transcriptase Polymerase Chain Reaction/standards , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Genes, Essential/genetics , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Lung Neoplasms/genetics , Models, Biological , Reference Standards , TATA-Box Binding Protein/genetics
18.
Stem Cell Rev Rep ; 5(4): 387-401, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20058202

ABSTRACT

Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use.


Subject(s)
Fetal Blood/metabolism , Mesenchymal Stem Cells/metabolism , Umbilical Cord/metabolism , Biomarkers/metabolism , Cell Differentiation , Cells, Cultured , Exons , Gene Expression Profiling , Gene Expression Regulation , Humans , Introns , Mesenchymal Stem Cells/cytology
19.
BMC Res Notes ; 1: 113, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-19014556

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. RESULTS: Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. CONCLUSION: Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies.

20.
J Neurooncol ; 88(3): 281-91, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18398573

ABSTRACT

The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.


Subject(s)
Brain Neoplasms/genetics , Gene Expression , Glioblastoma/genetics , Oligonucleotide Array Sequence Analysis , Adult , Aged , Biomarkers, Tumor/genetics , Brain/physiology , Gene Expression Profiling , Humans , Immunohistochemistry , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...