Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Chem Biol ; 18(2): 385-395, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36669120

ABSTRACT

(2,6)-Diamino-(5,7)-dihydroxyheptanoic acid (DADH), a non-proteinogenic amino acid, is converted to 1-azabicyclo[3.1.0]hexane ring-containing amino acids that are subsequently incorporated into ficellomycin and vazabitide A. The present study revealed that the sugar aminotransferase-like enzymes Fic25 and Vzb9, with a high amino acid sequence identity (56%) to each other, synthesized stereoisomers of DADH with (6S) and (6R) configurations, respectively. The crystal structure of the Fic25 complex with a PLP-(6S)-N2-acetyl-DADH adduct indicated that Asn45 and Gln197 (Asn205 and Ala53 in Vzb9) were located at positions that affected the stereochemistry of DADH being synthesized. A modeling study suggested that amino acid substitutions between Fic25 and Vzb9 allowed the enzymes to bind to the substrate with almost 180° rotation in the C5-C7 portions of the DADH molecules, accompanied by a concomitant shift in their C1-C4 portions. In support of this result, the replacement of two corresponding residues in Fic25 and Vzb9 increased (6R) and (6S) stereoselectivities, respectively. The different stereochemistry at C6 of DADH resulted in a different stereochemistry/orientation of the aziridine portion of the 1-azabicyclo[3.1.0]hexane ring, which plays a crucial role in biological activity, between ficellomycin and vazabitide A. A phylogenic analysis suggested that Fic25 and Vzb9 evolved from sugar aminotransferases to produce unusual building blocks for expanding the structural diversity of secondary metabolites.


Subject(s)
Amino Acids , Biological Products , Amino Acids/chemistry , Transaminases/metabolism , Hexanes , Sugars , Stereoisomerism
3.
J Am Chem Soc ; 144(35): 16164-16170, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35998388

ABSTRACT

Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.


Subject(s)
Aziridines , Sulfates , Aziridines/chemistry , DNA/chemistry , Mitomycin
4.
J Nat Prod ; 85(4): 1052-1058, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35195424

ABSTRACT

Collective total syntheses of trans-anhydromevalonic acid (tAHMA) and trans-anhydromevalonyl (tAHM) group-containing natural products (pestalotiopin A, pestalotiopamide C, pestalotiopamide D, farinomalein E, eleutherazine B, and trichocyclodipeptide A) were achieved using tAHMA esters as key intermediates. To this end, tAHMA tert-butyl ester was newly prepared by Z-vinyltosylation of tert-butyl 3-oxo-5-((triisopropylsilyl)oxy)pentanoate followed by the Negishi cross-coupling reaction with Me2Zn. tAHMA esters were converted to the target natural products via esterification or amidation. Comparison of the spectroscopic data of synthetic and natural products confirmed the E-configuration of the tAHM moieties in the natural products.


Subject(s)
Biological Products , Acids , Esters , Stereoisomerism
5.
Front Plant Sci ; 13: 1064378, 2022.
Article in English | MEDLINE | ID: mdl-36589093

ABSTRACT

Canonical strigolactones (SLs), such as orobanchol, consist of a tricyclic lactone ring (ABC-ring) connected to a methylbutenolide (D-ring). Tomato plants have been reported to produce not only orobanchol but also various canonical SLs related to the orobanchol structure, including orobanchyl acetate, 7-hydroxyorobanchol isomers, 7-oxoorobanchol, and solanacol. In addition to these, structurally unidentified SL-like compounds known as didehydroorobanchol isomers (DDHs), whose molecular mass is 2 Da smaller than that of orobanchol, have been found. Although the SL biosynthetic pathway in tomato is partially characterized, structural elucidation of DDHs is required for a better understanding of the entire biosynthetic pathway. In this study, three novel canonical SLs with the same molecular mass as DDHs were identified in tomato root exudates. The first was 6,7-didehydroorobanchol, while the other two were not in the DDH category. These two SLs were designated phelipanchol and epiphelipanchol because they induced the germination of Phelipanche ramosa, a noxious root parasitic weed of tomato. We also proposed a putative biosynthetic pathway incorporating these novel SLs from orobanchol to solanacol.

6.
J Nat Prod ; 84(10): 2749-2754, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34597517

ABSTRACT

The mevalonate pathway is an upstream terpenoid biosynthetic route of terpenoids for providing the two five-carbon units, dimethylallyl diphosphate, and isopentenyl diphosphate. Recently, trans-anhydromevalonate-5-phosphate (tAHMP) was isolated as a new biosynthetic intermediate of the archaeal mevalonate pathway. In this study, we would like to report the first synthesis of tAHMP and its enzymatic transformation using one of the key enzymes, mevalonate-5-phosphate dehydratase from a hyperthermophilic archaeon, Aeropyrum pernix. Starting from methyl tetrolate, a Cu-catalyzed allylation provided an E-trisubstituted olefin in a stereoselective manner. The resulting E-olefin was transformed to tAHMP by cleavage of the olefin and phosphorylation. The structure of the synthetic tAHMP was unambiguously determined by NOESY analysis.


Subject(s)
Aeropyrum/chemistry , Mevalonic Acid/chemistry , Organophosphates/chemistry , Terpenes/chemistry , Aeropyrum/enzymology , Hemiterpenes , Hydro-Lyases/metabolism , Mevalonic Acid/analogs & derivatives , Molecular Structure , Organophosphorus Compounds
7.
RSC Adv ; 11(46): 28530-28534, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-35478564

ABSTRACT

The selective oxidation of alcohol-d 1 to prepare aldehyde-d 1 was newly developed by means of NaBD4 reduction/activated MnO2 oxidation. Various aldehyde-d 1 derivatives including aromatic and unsaturated aldehyde-d 1 can be prepared with a high deuterium incorporation ratio (up to 98% D). Halogens (chloride, bromide, and iodide), alkene, alkyne, ester, nitro, and cyano groups in the substrates are tolerated under the mild conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...