Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 55(11): 1929-1940, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37919452

ABSTRACT

Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying enzyme predominantly expressed in neural and white adipose tissue (WAT). It is a potential drug target for metabolic syndrome, as Plaat3 deficiency in mice protects against diet-induced obesity. We identified seven patients from four unrelated consanguineous families, with homozygous loss-of-function variants in PLAAT3, who presented with a lipodystrophy syndrome with loss of fat varying from partial to generalized and associated with metabolic complications, as well as variable neurological features including demyelinating neuropathy and intellectual disability. Multi-omics analysis of mouse Plaat3-/- and patient-derived WAT showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in the signaling of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipocyte differentiation. Accordingly, CRISPR-Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. These findings establish PLAAT3 deficiency as a hereditary lipodystrophy syndrome with neurological manifestations, caused by a PPARγ-dependent defect in WAT differentiation and function.


Subject(s)
Lipodystrophy , PPAR gamma , Humans , Animals , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Adipocytes , Adipogenesis/genetics , Lipodystrophy/genetics , Lipodystrophy/metabolism , Phospholipases
2.
J Bacteriol ; 203(10)2021 04 21.
Article in English | MEDLINE | ID: mdl-33649148

ABSTRACT

Ribosomal protein S14 can be classified into three types. The first, the C+ type has a Zn2+ binding motif and is ancestral. The second and third are the C- short and C- long types, neither of which contain a Zn2+ binding motif and which are ca. 90 residues and 100 residues in length, respectively. In the present study, the C+ type S14 from Bacillus subtilis ribosomes (S14BsC+) were completely replaced by the heterologous C- long type of S14 from Escherichia coli (S14Ec) or Synechococcus elongatus (S14Se). Surprisingly, S14Ec and S14Se were incorporated fully into 70S ribosomes in B. subtilis However, the growth rates as well as the sporulation efficiency of the mutants harboring heterologous S14 were significantly decreased. In these mutants, the polysome fraction was decreased and the 30S and 50S subunits accumulated unusually, indicating that cellular translational activity of these mutants was decreased. In vitro analysis showed a reduction in the translational activity of the 70S ribosome fraction purified from these mutants. The abundance of ribosomal proteins S2 and S3 in the 30S fraction in these mutants was reduced while that of S14 was not significantly decreased. It seems likely that binding of heterologous S14 changes the structure of the 30S subunit, which causes a decrease in the assembly efficiency of S2 and S3, which are located near the binding site of S14. Moreover, we found that S3 from S. elongatus cannot function in B. subtilis unless S14Se is present.IMPORTANCE S14, an essential ribosomal protein, may have evolved to adapt bacteria to zinc-limited environments by replacement of a zinc-binding motif with a zinc-independent sequence. It was expected that the bacterial ribosome would be tolerant to replacement of S14 because of the previous prediction that the spread of C- type S14 involved horizontal gene transfer. In this study, we completely replaced the C+ type of S14 in B. subtilis ribosome with the heterologous C- long type of S14 and characterized the resulting chimeric ribosomes. Our results suggest that the B. subtilis ribosome is permissive for the replacement of S14, but coevolution of S3 might be required to utilize the C- long type of S14 more effectively.


Subject(s)
Bacillus subtilis/chemistry , Bacterial Proteins/metabolism , Evolution, Molecular , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Escherichia coli/chemistry , Phylogeny , Protein Biosynthesis , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Ribosome Subunits, Small, Bacterial/metabolism , Spores, Bacterial/physiology , Synechococcus/chemistry , Zinc/metabolism
3.
J Cell Sci ; 134(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33771928

ABSTRACT

TMEM41B and VMP1 are endoplasmic reticulum (ER)-localizing multi-spanning membrane proteins required for ER-related cellular processes such as autophagosome formation, lipid droplet homeostasis and lipoprotein secretion in eukaryotes. Both proteins have a VTT domain, which is similar to the DedA domain found in bacterial DedA family proteins. However, the molecular function and structure of the DedA and VTT domains (collectively referred to as DedA domains) and the evolutionary relationships among the DedA domain-containing proteins are largely unknown. Here, we conduct a remote homology search and identify a new clade consisting mainly of bacterial proteins of unknown function that are members of the Pfam family PF06695. Phylogenetic analysis reveals that the TMEM41, VMP1, DedA and PF06695 families form a superfamily with a common origin, which we term the DedA superfamily. Coevolution-based structural prediction suggests that the DedA domain contains two reentrant loops facing each other in the membrane. This topology is biochemically verified by the substituted cysteine accessibility method. The predicted structure is topologically similar to that of the substrate-binding region of Na+-coupled glutamate transporter solute carrier 1 (SLC1) proteins. A potential ion-coupled transport function of the DedA superfamily proteins is discussed. This article has an associated First Person interview with the joint first authors of the paper.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Bacterial Proteins , Endoplasmic Reticulum/genetics , Humans , Intracellular Membranes , Membrane Proteins/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...