Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555862

ABSTRACT

Finfish production has seen over three-fold increase in the past 30 years (1990-2020), and Atlantic salmon (A. salmon; salmo salar) accounted for approximately 32.6% of the total marine and coastal aquaculture of all finfish species in the year 2020, making it one of the most profitable farmed fish species globally. This growth in production is, however, threatened by a number of problems which can be solved using the CRISPR/Cas technology. In vitro applications of CRISPR/Cas using cell lines can complement its in vivo applications, but salmonids-derived cell lines are difficult to gene edit because they grow slowly, are difficult to transfect and isolate single clones of gene-edited cells. While clonal isolation of the gene-edited Chinook salmon cell line (CHSE-214) has successfully been performed, there is no report of successful clonal isolation of the gene-edited A. salmon ASK-1 and SHK-1cell lines. In the current study, two gene loci-cr2 and mmp9 of A. salmon-were efficiently edited using the ribonucleoprotein (RNP) and plasmid CRISPR/Cas9 strategies. Edited cells were enriched using flow cytometer-activated cell sorting (FACS), followed by clonal isolation and expansion of edited cells. The study both confirms the recent report of the highly efficient editing of these widely used model cell lines, as well as extends the frontline in the single-cell cloning of gene-edited salmonids cells. The report also highlights the pitfalls and future directions in the application of CRISPR/Cas9 in these cells.


Subject(s)
Gene Editing , Salmonidae , Animals , CRISPR-Cas Systems/genetics , Cell Line , Clone Cells , Salmon/genetics
2.
Transgenic Res ; 31(1): 1-21, 2022 02.
Article in English | MEDLINE | ID: mdl-34304349

ABSTRACT

Aquaculture is becoming the primary source of seafood for human diets, and farmed fish aquaculture is one of its fastest growing sectors. The industry currently faces several challenges including infectious and parasitic diseases, reduced viability, fertility reduction, slow growth, escapee fish and environmental pollution. The commercialization of the growth-enhanced AquAdvantage salmon and the CRISPR/Cas9-developed tilapia (Oreochromis niloticus) proffers genetic engineering and genome editing tools, e.g. CRISPR/Cas, as potential solutions to these challenges. Future traits being developed in different fish species include disease resistance, sterility, and enhanced growth. Despite these notable advances, off-target effect and non-clarification of trait-related genes among other technical challenges hinder full realization of CRISPR/Cas potentials in fish breeding. In addition, current regulatory and risk assessment frameworks are not fit-for purpose regarding the challenges of CRISPR/Cas notwithstanding that public and regulatory acceptance are key to commercialization of products of the new technology. In this study, we discuss how CRISPR/Cas can be used to overcome some of these limitations focusing on diseases and environmental release in farmed fish aquaculture. We further present technical limitations, regulatory and risk assessment challenges of the use of CRISPR/Cas, and proffer research strategies that will provide much-needed data for regulatory decisions, risk assessments, increased public awareness and sustainable applications of CRISPR/Cas in fish aquaculture with emphasis on Atlantic salmon (Salmo salar) breeding.


Subject(s)
CRISPR-Cas Systems , Containment of Biohazards , Animals , Aquaculture , Fishes/genetics , Gene Editing
3.
BMC Infect Dis ; 18(1): 160, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29618330

ABSTRACT

BACKGROUND: In West and Central Africa areas of endemic Loa loa infections overlap with regions of high prevalence of human immunodeficiency virus type 1 (HIV-1) infections. Because individuals in this region are exposed to filarial parasites from birth, most HIV-1 infected individuals invariably also have a history of filarial parasite infection. Since HIV-1 infection both depletes immune system and maintains it in perpetual inflammation, this can hamper Loa loa filarial parasite mediated immune modulation, leading to enhanced loaisis. METHODS: In this study we have assessed in plasma from asymptomatic anti-retroviral (ARV) naïve Loa loa microfilaraemic HIV-1 infected people the filarial antibody responses specific to a filariasis composite antigen consisting of Wbgp29-BmR1-BmM14-WbSXP. The antibody responses specific to the filariasis composite antigen was determined by enzyme linked immunosorbent assay (ELISA) in plasma from ARV naïve Loa loa microfilaraemic HIV-1 infected participants. In addition the filarial antigen specific IgG antibody subclass profiles were also determined for both HIV-1 positive and negative people. RESULTS: Both Loa loa microfilaraemic HIV-1 positive and negative individuals showed significantly higher plasma levels of IgG1 (P < 0.0001), IgG2 (P < 0.0001) and IgM (P < 0.0001) relative to amicrofilaraemic participants. A significant increase in IgE (P < 0.0001) was observed exclusively in Loa loa microfilaraemic HIV-1 infected people. In contrast there was a significant reduction in the level of IgG4 (p < 0.0001) and IgG3 (P < 0.0001) in Loa loa microfilaraemic HIV-1 infected individuals. CONCLUSIONS: Loa loa microfilaraemia in ARV naïve HIV-1 infected people through differential reduction of plasma levels of filarial antigen specific IgG3, IgG4 and a significant increase in plasma levels of filarial antigen specific IgE could diminish Loa loa mediated immune-regulation. This in effect can result to increase loaisis mediated immunopathology in antiretroviral naive HIV-1 infected people.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Antigens, Helminth/immunology , HIV Infections/drug therapy , Loiasis/diagnosis , Adult , Aged , Animals , Antibodies, Helminth/blood , Antibody Formation , Enzyme-Linked Immunosorbent Assay , Female , HIV Infections/complications , Humans , Immunoglobulin E/blood , Immunoglobulin G/blood , Loa/immunology , Loa/isolation & purification , Loiasis/complications , Male , Middle Aged , Young Adult
4.
Front Plant Sci ; 9: 1874, 2018.
Article in English | MEDLINE | ID: mdl-30622546

ABSTRACT

New and emerging gene-editing techniques make it possible to target specific genes in species with greater speed and specificity than previously possible. Of major relevance for plant breeding, regulators and scientists are discussing how to regulate products developed using these gene-editing techniques. Such discussions include whether to adopt or adapt the current framework for GMO risk governance in evaluating the impacts of gene-edited plants, and derived products, on the environment, human and animal health and society. Product classification or definition is one of several aspects of the current framework being criticized. Further, knowledge gaps related to risk assessments of gene-edited organisms-for example of target and off-target effects of intervention in plant genomes-are also of concern. Resolving these and related aspects of the current framework will involve addressing many subjective, value-laden positions, for example how to specify protection goals through ecosystem service approaches. A process informed by responsible research and innovation practices, involving a broader community of people, organizations, experts, and interest groups, could help scientists, regulators, and other stakeholders address these complex, value-laden concerns related to gene-editing of plants with and for society.

5.
Immun Inflamm Dis ; 6(1): 163-175, 2018 03.
Article in English | MEDLINE | ID: mdl-29205929

ABSTRACT

INTRODUCTION: Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune-modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV-1 gag protein (DEC-Gag) vaccine; for the induction of helper CD4+ T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV-1 Gag P55 (rNDV-L-Gag) vaccine. METHODS: We do so through successive administration of anti-DEC205-gagP24 protein plus polyICLC (DEC-Gag) vaccine and rNDV-L-Gag. First strong gag specific helper CD4+ T cells are induced in mice by selected targeting of anti-DEC205-gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV-L-Gag vaccine and improved both systemic and mucosal gag specific immunity. RESULTS: This sequential DEC-Gag vaccine prime followed by an rNDV-L-gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8+ T cells to a pathogenic virus infection site. CONCLUSION: Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8+ T cells to a pathogenic virus infection site such as the murine airway.


Subject(s)
AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , HIV Core Protein p24/immunology , Immunization, Secondary , Newcastle disease virus/immunology , AIDS Vaccines/genetics , Animals , CHO Cells , Cricetulus , HIV Core Protein p24/genetics , Humans , Mice , Newcastle disease virus/genetics
6.
Viruses ; 9(11)2017 10 29.
Article in English | MEDLINE | ID: mdl-29109380

ABSTRACT

Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.


Subject(s)
Genetic Vectors , Vaccines, Synthetic/adverse effects , Vaccinia virus/genetics , Animals , Containment of Biohazards , Environment , Humans , Risk Assessment , Vaccination , Vaccinia virus/immunology
7.
Article in English | MEDLINE | ID: mdl-28961180

ABSTRACT

Bioflocculants mediate the removal of suspended particles from solution and the efficiency of flocculation is dependent on the characteristics of the flocculant. Apart from the merits of biodegradability and harmlessness, bioflocculants could be viable as industrially relevant flocculants as they are a renewable resource. Additionally, the shortcomings associated with the conventionally used flocculants such as aluminium salts and acrylamide polymers, which include dementia and cancer, highlight more the need to use bioflocculants as an alternative. Consequently, in this study a marine sediment bacterial isolate was screened for bioflocculant production. Basic local alignment search tools (BLAST) analysis of 16S ribosomal deoxyribonucleic acid (rDNA) sequence of the bacterial isolate showed 98% similarity to Bacillus thuringiensis MR-R1. The bacteria produced bioflocculant optimally with inoculum size (4% v/v) (85%), glucose (85.65%) and mixed nitrogen source (urea, ammonium chloride and yeast extract) (75.9%) and the divalent cation (Ca2+) (62.3%). Under optimal conditions, a maximum flocculating activity of over 85% was attained after 60 h of cultivation. The purified polysaccharide-bioflocculant flocculated optimally at alkaline pH 12 (81%), in the presence of Mn2+ (73%) and Ca2+ (72.8%). The high flocculation activity shown indicates that the bioflocculant may contend favourably as an alternative to the conventionally used flocculants in water treatment.


Subject(s)
Bacillus/metabolism , Bays , Geologic Sediments/microbiology , Polysaccharides/chemistry , Bacillus/genetics , Flocculation , Nitrogen , Polysaccharides/metabolism , South Africa
8.
Environ Technol ; 37(14): 1829-42, 2016.
Article in English | MEDLINE | ID: mdl-26797258

ABSTRACT

This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.


Subject(s)
Bacillus/metabolism , Water Purification/methods , Bacterial Proteins , Carbon , Culture Media , Flocculation , Kaolin , Nitrogen , Polysaccharides , South Africa
9.
Int J Mol Sci ; 16(6): 12986-3003, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26062133

ABSTRACT

A bioflocculant named MBF-UFH produced by a Bacillus species isolated from sediment samples of Algoa Bay of the Eastern Cape Province of South Africa was characterized. The bacterial identification was through 16S rDNA sequencing; nucleotide sequences were deposited in GenBank as Bacillus sp. AEMREG7 with Accession Number KP659187. The production of the bioflocculant was observed to be closely associated with cell growth. The bioflocculant had the highest flocculating activity of 83.2% after 72 h of cultivation, and approximately 1.6 g of purified MBF-UFH was recovered from 1 L of fermentation broth. Its chemical analyses indicated that it is a glycoprotein composed of polysaccharide (76%) and protein (14%). Fourier transform infrared spectroscopy (FTIR) revealed that it consisted of hydroxyl, amide, carboxyl and methoxyl as the functional moieties. Scanning electron microscopy (SEM) revealed the amorphous structure of MBF-UFH and flocculated kaolin clay particles. The maximum flocculating activity of 92.6% against kaolin clay suspension was achieved at 0.3 mg/mL over pH ranges of 3-11 with the peak flocculating rate at pH 8 in the presence of MgCl2. The bioflocculant retained high flocculating activity of 90% after heating at 100 °C for 1 h. MBF-UFH appears to have immense potential as an alternative to conventional chemical flocculants.


Subject(s)
Bacillus/chemistry , Bacterial Proteins/chemistry , Glycoproteins/chemistry , Polysaccharides, Bacterial/chemistry , Bacillus/genetics , Bacterial Proteins/biosynthesis , Base Sequence , Flocculation , Glycoproteins/biosynthesis , Kaolin/chemistry , Molecular Sequence Data , Polysaccharides, Bacterial/biosynthesis , RNA, Ribosomal, 16S/genetics
10.
Int J Hepatol ; 2012: 501671, 2012.
Article in English | MEDLINE | ID: mdl-22900193

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Hepatitis B or C infections are the main causes of HCC with hepatitis C being the major risk factor for liver cancer in the developed countries. Recently, complications with bacteria of the genus Helicobacter have been associated with HCV-induced HCC. To further understand the mechanisms leading to the development of HCC in the presence of HCV and/or Helicobacter spp., investigation of the differential protein expression in Huh7 cells harbouring HCV-replicon, and replicon cured-Huh7 cells cocultured with H. bilis was done employing two-dimensional gel electrophoresis and mass spectrometry. In the transfected-Huh7 cells exposed to sublethal inoculum densities of H. bilis, 53 different proteins were identified comprising of 28 upregulated and 16 downregulated proteins including 9 potential protein isoforms; in the cured Huh7 cells, 45 different proteins were identified including 33 upregulated, 8 downregulated and, 9 potential protein isoforms. H. bilis affected the modulation of proteins involved in different pathways of Huh7-derived cells physiology including proteins involved in the progression from dysplasia to neoplasm. The result also indicated that the response of the Huh7-derived cells to the presence of H. bilis depended on whether or not HCV replicon was present.

11.
Proteome Sci ; 10: 27, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22533459

ABSTRACT

BACKGROUND: Helicobacter hepaticus colonizes the intestine and liver of mice causing hepatobiliary disorders such as hepatitis and hepatocellular carcinoma, and has also been associated with inflammatory bowel disease in children. In its habitat, H. hepaticus must encounter bile which has potent antibacterial properties. To elucidate virulence and host-specific adaptation mechanisms of H. hepaticus modulated by human or porcine bile, a proteomic study of its response to the two types of bile was performed employing two-dimensional gel electrophoresis (2-DE) and mass spectrometry. RESULTS: The 2-DE and mass spectrometry analyses of the proteome revealed that 46 proteins of H. hepaticus were differentially expressed in human bile, 18 up-regulated and 28 down-regulated. In the case of porcine bile, 32 proteins were differentially expressed of which 19 were up-regulated, and 13 were down-regulated. Functional classifications revealed that identified proteins participated in various biological functions including stress response, energy metabolism, membrane stability, motility, virulence and colonization. Selected genes were analyzed by RT-PCR to provide internal validation for the proteomic data as well as provide insight into specific expressions of motility, colonization and virulence genes of H. hepaticus in response to human or porcine bile. CONCLUSIONS: Overall, the data suggested that bile is an important factor that determines virulence, host adaptation, localization and colonization of specific niches within host environment.

12.
J Proteome Res ; 9(3): 1374-84, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20078136

ABSTRACT

Helicobacter hepaticus is an enterohepatic bacterium associated with inflammatory bowel disease in children and causes severe hepatobiliary disorders in mice. To elucidate the molecular response of H. hepaticus to bovine bile, a proteomic investigation was conducted. Bacteria were grown for 48 h in liquid media supplemented with different concentrations of bovine bile to determine its effects on bacterial growth and morphology. Protein expression profiles of bacteria grown at a bile concentration of 0.1% and in the absence of bile were obtained using two-dimensional gel electrophoresis. Gel spots with differences in intensities greater than 2-fold between both conditions were determined, and 55 differentially expressed proteins were identified using tandem mass spectrometry. Identified proteins participate in various biological functions including cell envelope biosynthesis, cell response to stress, iron homeostasis and transport, motility, primary and secondary metabolism, and virulence. Changes in the expression of H. hepaticus genes related to proteins involved in virulence and oxidative stress that were differentially expressed in the presence of bile were investigated using real-time reverse transcriptase PCR. The results indicated that the effects of bile on H. hepaticus included a strong response to oxidative stress and an expression of factors that can promote host colonization.


Subject(s)
Bacterial Proteins/metabolism , Bile , Helicobacter hepaticus/metabolism , Oxidative Stress/drug effects , Proteomics/methods , Animals , Bacterial Proteins/chemistry , Cattle , Culture Media/chemistry , Electrophoresis, Gel, Two-Dimensional , Helicobacter hepaticus/cytology , Hydroxyl Radical/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry
13.
Future Microbiol ; 4(10): 1283-301, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19995189

ABSTRACT

Helicobacter pylori infection is one of the most common chronic bacterial infections in humans. The association of other Helicobacter spp. with extragastric diseases in animals is well established, and a role of these bacteria in human liver disease is becoming clearer. Several case-control studies have reported possible associations of Helicobacter spp. with various liver diseases, including hepatocellular carcinoma, which is the fifth most common type of carcinoma among men worldwide, and the eighth most common among women. Thus, it is important to understand molecular mechanisms that may lead to hepatotoxicity or hepatocellular dysfunction in which Helicobacter spp. may play a role in inducing malignant transformation of liver cells.


Subject(s)
Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/microbiology , Helicobacter Infections/complications , Helicobacter pylori/pathogenicity , Animals , Humans , Models, Biological , Prevalence
14.
Expert Rev Anti Infect Ther ; 7(7): 835-67, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19735225

ABSTRACT

Understanding the current status of the discovery and development of anti-Helicobacter therapies requires an overview of the searches for therapeutic targets performed to date. A summary is given of the very substantial body of work conducted in the quest to find Helicobacter pylori genes that could be suitable candidates for therapeutic intervention. The products of most of these genes perform metabolic functions, and others have roles in growth, cell motility and colonization. The genes identified as potential targets have been organized into three categories according to their degree of characterization. A short description and evaluation is provided of the main candidates in each category. Investigations of potential therapeutic targets have generated a wealth of information about the physiology and genetics of H. pylori, and its interactions with the host, but have yielded little by way of new therapies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/drug effects , Genes, Bacterial/drug effects , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Helicobacter Infections/microbiology , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Helicobacter pylori/physiology , Humans , Mice
15.
Helicobacter ; 14 Suppl 1: 69-74, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19712171

ABSTRACT

Non-H. pylori Helicobacter species (NHPHS) are associated with several important human and animal diseases. In the past year research into this group of bacteria has continued to gain attention, and novel species have been described in new niches owing to improvements in detection methods. Polymerase chain reaction and/or sequencing remain the gold standard for the detection of this genus. New insights into the pathogenesis of the NHPHS in hepatobiliary, gastric, and intestinal diseases were gained. In particular, data revealed interaction between hepatic steatosis and infectious hepatitis in the development of hepatocellular carcinoma. Evidence of an association between hepatitis C virus and Helicobacter spp. in hepatocarcinoma development was also provided; and male sex hormone signaling appeared to influence infectious hepatitis induced by Helicobacter hepaticus. More findings support an association between Helicobacter heilmannii and gastric adenocarcinoma; and in mice, mucins MUC4 and MUC5 but not MUC1 influence the colonization and pathogenesis of Helicobacter felis. Data indicated that the roles of the adaptive immune system in H. hepaticus-induced intestinal tumorigenesis are different in the small and large intestines, and environmental factors, such as bile acids may modulate H. hepaticus carcinogenic potential. New reports in the prevention and eradication of NHPHS showed a protective response against Helicobacter suis induced by vaccine administration, and a successful cross-foster rederivation method successfully eradicated Helicobacter spp. from contaminated mice litters. Overall, the studies provided insights into the pathophysiology of Helicobacter species other than Helicobacter pylori.


Subject(s)
Helicobacter Infections/microbiology , Helicobacter/pathogenicity , Animals , Helicobacter/isolation & purification , Helicobacter/physiology , Helicobacter Infections/prevention & control , Helicobacter pylori/isolation & purification , Helicobacter pylori/pathogenicity , Helicobacter pylori/physiology , Humans , Male , Mice
16.
Antonie Van Leeuwenhoek ; 92(3): 289-300, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17357813

ABSTRACT

Helicobacter hepaticus infects the bowel and biliary tree of several animals, producing inflammation. Colonisation of mouse livers can induce hepatocellular carcinomas. The effects of H. hepaticus on the proliferation and global protein expression of human HEp-2 cells were studied by examining the changes in the protein profiles of cells exposed to the bacterium. HEp-2 cells were grown for four days under a microaerobic atmosphere or under the same conditions in co-cultures with H. hepaticus at various inoculum densities. Enlargement, distension and elongation of HEp-2 cells were observed in co-cultures with H. hepaticus. The number of live cells declined by only an order of magnitude at bacterial inocula of approximately 10(9)cfu/ml, but were reduced to less than 10(3)cells/ml at approximately 10(10)cfu/ml bacteria inocula. Protein expression by HEp-2 cells was investigated employing two-dimensional gel electrophoresis. In cells grown with or without bacteria, 17 differentially expressed proteins were identified by tandem mass spectrometry. These proteins participated in several biological functions including amino acid metabolism, cell growth and proliferation, stress response, protein translation and modification, etc. The onset of a catastrophic killing of HEp-2 cells at a bacterial density of approximately 10(9)cfu/ml suggested a multimodal action for H. hepaticus infection, and the modulation of the expression of proteins involved in different biological functions showed that the presence of H. hepaticus has broad effects on the physiology of HEp-2 cells.


Subject(s)
Helicobacter hepaticus/physiology , Proteome/metabolism , Animals , Cell Line , Cell Proliferation , Cell Shape/physiology , Electrophoresis, Gel, Two-Dimensional , Helicobacter Infections/metabolism , Humans , Tandem Mass Spectrometry
17.
FEMS Immunol Med Microbiol ; 49(1): 101-23, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17266717

ABSTRACT

Campylobacter, Helicobacter and Wolinella are genera of the order Campylobacterales, belonging to the class Epsilonproteobacteria. Their habitats are various niches in the gastrointestinal tract of higher animals, where they may come into contact with bile. Microorganisms in these environments require mechanisms of resistance to the surface-active amphipathic molecules with potent antimicrobial activities present in bile. This review summarizes current knowledge on the molecular responses to bile by Campylobacterales and other bacterial species that inhabit the intestinal tract and belong to the phyla Proteobacteria, Bacteriodetes, Firmicutes and Actinobacteria. To date, 125 specific genes have been implicated in bile responses, of which 10 are found in Campylobacterales. Genome database searches, analyses of protein sequence and domain similarities, and gene ontology data integration were performed to compare the responses to bile of these bacteria. The results showed that 33 proteins of bacteria belonging to the four phyla had similarities equal to or greater than 50-46% proteins of Campylobacterales. Domain architecture analyses revealed that 151 Campylobacterales proteins had similar domain composition and organization to 60 proteins known to participate in the tolerance to bile in other bacteria. The proteins CmeB, CmeF and CbrR of Campylobacter jejuni involved in bile tolerance were homologous to 42 proteins identified in the Proteobacteria, Bacteriodetes and Firmicutes. On the other hand, the proteins CiaB, CmeA, CmeC, CmeD, CmeE and FlaAsigma(28) also involved in the response to bile of C. jejuni, did not have homologues in other bacteria. Among the bacteria inhabiting the gastrointestinal tract, the Campylobacterales seem to have evolved some mechanisms of bile resistance similar to those of other bacteria, as well as other mechanisms that appear to be characteristic of this order.


Subject(s)
Bile/physiology , Epsilonproteobacteria/physiology , Animals , Computational Biology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...