Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 903: 166554, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37633372

ABSTRACT

Waste management has been a chronic environmental challenge in Nigeria, coupled with declining economic performance due to energy crises. This study was designed to estimate electricity potential of sewage sludge to meet the 2030 Renewable Energy target. However, there was a need to fill the gap in data related to wastewater management in Nigeria. The wastewater and sludge generated from households were evaluated based on data on population, access to water, and coverage of sewer networks. Consequently, the technical and economic feasibility of electricity generation was assessed using Anaerobic Digestion (AD)1 and Incineration (INC)2 scenarios. The core results found that North Central had the highest potential for wastewater generation (142.8-403.6 billion litres/yr) and collection (8.3-37.5 billion litres/yr) over 20 years. However, the South East had the highest average sewer collection rate of 9.08 %. The AD technology was the most technically viable, with a maximum generation of 6.8 GWh/yr in the North Central. In comparison, the INC outperformed AD in most of the financial viability indicators considered viz-a-viz: Life Cycle Cost (LCC),3 Net Present Value (NPV),4 Pay Back Period (PBP),5 Internal Rate of Return (IRR),6 Levelized Cost of Energy (LCOE).7 The AD had a higher NPV of 16.3-69.58 million USD and a shorter PBP of about 4 years. The INC had a lower LCC of 0.1-0.34 million USD, LCOE of 0.046-0.094 USD/kWh, and a higher IRR of 19.3-25 %. Additionally, the sensitivity of NPV and INC to changes in economic factors would be noteworthy for investors and policymakers. Ultimately, the choice of technology should reflect the fiscal goal and priorities of a project.

SELECTION OF CITATIONS
SEARCH DETAIL