Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Methods ; 4(1): 100684, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38211592

ABSTRACT

The mammalian brain contains a diverse array of cell types, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time consuming and expensive, presenting a significant barrier to entry for investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several adeno-associated virus (AAV) vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed that overcome these limitations. Using a publicly available RNA sequencing (RNA-seq) dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here, we demonstrate that a previously identified enhancer-AAV selectively targets dentate granule cells over other excitatory neuron types in the hippocampus of wild-type adult mice.


Subject(s)
Dentate Gyrus , Neurons , Mice , Animals , Dentate Gyrus/physiology , Neurons/physiology , Hippocampus/physiology , Mammals
2.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214904

ABSTRACT

The mammalian brain contains the most diverse array of cell types of any organ, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type-specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has steadily improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time-consuming and expensive, presenting a significant barrier to entry for many investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several AAV vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed which overcome these limitations. Using a publicly available RNAseq dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here we identified a promising enhancer-AAV for targeting dentate granule cells and validated its selectivity in wild-type adult mice.

3.
Nat Commun ; 13(1): 2927, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614064

ABSTRACT

Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We describe a mouse line for cell type-specific expression of biotin ligase TurboID, for in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show robust protein biotinylation in neuronal soma and axons throughout the brain, allowing quantitation of over 2000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we contrast Camk2a-neuron and Aldh1l1-astrocyte proteomes and identify brain region-specific proteomic differences within both cell types, some of which might potentially underlie the selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we apply an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states.


Subject(s)
Biotin , Proteomics , Animals , Astrocytes/metabolism , Biotin/metabolism , Biotinylation , Brain/metabolism , Mice , Neurons/metabolism , Proteome/metabolism
4.
J Neurosci ; 41(31): 6596-6616, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34261699

ABSTRACT

Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.


Subject(s)
Developmental Disabilities , Mitochondria/physiology , Mitochondrial Proteins/genetics , Organic Anion Transporters/genetics , Proteostasis/genetics , Ribonucleoproteins/genetics , Ribosomal Proteins/genetics , Animals , Cell Line , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Developmental Disabilities/physiopathology , Drosophila , Gene Expression Regulation/genetics , Humans , Neurogenesis/physiology , Protein Biosynthesis/genetics , Rats , Rats, Sprague-Dawley , Ribosomes/physiology
5.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34257077

ABSTRACT

Patch-clamp instruments including amplifier circuits and pipettes affect the recorded voltage signals. We hypothesized that realistic and complete in silico representation of recording instruments together with detailed morphology and biophysics of small recorded structures will reveal signal distortions and provide a tool that predicts native, instrument-free electrical signals from distorted voltage recordings. Therefore, we built a model that was verified by small axonal recordings. The model accurately recreated actual action potential (AP) measurements with typical recording artefacts and predicted the native electrical behavior. The simulations verified that recording instruments substantially filter voltage recordings. Moreover, we revealed that instrumentation directly interferes with local signal generation depending on the size of the recorded structures, which complicates the interpretation of recordings from smaller structures, such as axons. However, our model offers a straightforward approach that predicts the native waveforms of fast voltage signals and the underlying conductances even from the smallest neuronal structures.


Subject(s)
Axons , Neurons , Action Potentials , Computer Simulation , Neural Conduction , Patch-Clamp Techniques
6.
Elife ; 92020 06 03.
Article in English | MEDLINE | ID: mdl-32490811

ABSTRACT

CCK-expressing interneurons (CCK+INs) are crucial for controlling hippocampal activity. We found two firing phenotypes of CCK+INs in rat hippocampal CA3 area; either possessing a previously undetected membrane potential-dependent firing or regular firing phenotype, due to different low-voltage-activated potassium currents. These different excitability properties destine the two types for distinct functions, because the former is essentially silenced during realistic 8-15 Hz oscillations. By contrast, the general intrinsic excitability, morphology and gene-profiles of the two types were surprisingly similar. Even the expression of Kv4.3 channels were comparable, despite evidences showing that Kv4.3-mediated currents underlie the distinct firing properties. Instead, the firing phenotypes were correlated with the presence of distinct isoforms of Kv4 auxiliary subunits (KChIP1 vs. KChIP4e and DPP6S). Our results reveal the underlying mechanisms of two previously unknown types of CCK+INs and demonstrate that alternative splicing of few genes, which may be viewed as a minor change in the cells' whole transcriptome, can determine cell-type identity.


Subject(s)
CA3 Region, Hippocampal/cytology , Cholecystokinin/metabolism , Interneurons , Shal Potassium Channels , Animals , Cells, Cultured , Interneurons/chemistry , Interneurons/classification , Interneurons/metabolism , Membrane Potentials/physiology , Phenotype , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Rats, Wistar , Shal Potassium Channels/chemistry , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Transcriptome/genetics
7.
J Neurosci ; 38(7): 1711-1724, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29335356

ABSTRACT

The sparse single-spike activity of dentate gyrus granule cells (DG GCs) is punctuated by occasional brief bursts of 3-7 action potentials. It is well-known that such presynaptic bursts in individual mossy fibers (MFs; axons of granule cells) are often able to discharge postsynaptic CA3 pyramidal cells due to powerful short-term facilitation. However, what happens in the CA3 network after the passage of a brief MF burst, before the arrival of the next burst or solitary spike, is not understood. Because MFs innervate significantly more CA3 interneurons than pyramidal cells, we focused on unitary MF responses in identified interneurons in the seconds-long postburst period, using paired recordings in rat hippocampal slices. Single bursts as short as 5 spikes in <30 ms in individual presynaptic MFs caused a sustained, large increase (tripling) in the amplitude of the unitary MF-EPSCs for several seconds in ivy, axo-axonic/chandelier and basket interneurons. The postburst unitary MF-EPSCs in these feedforward interneurons reached amplitudes that were even larger than the MF-EPSCs during the bursts in the same cells. In contrast, no comparable postburst enhancement of MF-EPSCs could be observed in pyramidal cells or nonfeedforward interneurons. The robust postburst increase in MF-EPSCs in feedforward interneurons was associated with significant shortening of the unitary synaptic delay and large downstream increases in disynaptic IPSCs in pyramidal cells. These results reveal a new cell type-specific plasticity that enables even solitary brief bursts in single GCs to powerfully enhance inhibition at the DG-CA3 interface in the seconds-long time-scales of interburst intervals.SIGNIFICANCE STATEMENT The hippocampal formation is a brain region that plays key roles in spatial navigation and learning and memory. The first stage of information processing occurs in the dentate gyrus, where principal cells are remarkably quiet, discharging low-frequency single action potentials interspersed with occasional brief bursts of spikes. Such bursts, in particular, have attracted a lot of attention because they appear to be critical for efficient coding, storage, and recall of information. We show that single bursts of a few spikes in individual granule cells result in seconds-long potentiation of excitatory inputs to downstream interneurons. Thus, while it has been known that bursts powerfully discharge ("detonate") hippocampal excitatory cells, this study clarifies that they also regulate inhibition during the interburst intervals.


Subject(s)
Dentate Gyrus/physiology , Action Potentials/physiology , Animals , Axons/physiology , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/physiology , Cytoplasmic Granules/physiology , Dentate Gyrus/cytology , Excitatory Postsynaptic Potentials/physiology , Feedback, Physiological , Female , Male , Mossy Fibers, Hippocampal/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Pyramidal Cells/physiology , Rats , Rats, Wistar , Synapses/physiology
9.
Hippocampus ; 27(10): 1034-1039, 2017 10.
Article in English | MEDLINE | ID: mdl-28696588

ABSTRACT

Feedforward inhibition (FFI) between the dentate gyrus (DG) and CA3 sparsifies and shapes memory- and spatial navigation-related activities. However, our understanding of this prototypical FFI circuit lacks essential details, as the wiring of FFI is not yet mapped between individual DG granule cells (GCs) and CA3 pyramidal cells (PCs). Importantly, theoretically opposite network contributions are possible depending on whether the directly excited PCs are differently inhibited than the non-excited PCs. Therefore, to better understand FFI wiring schemes, we compared the prevalence of disynaptic inhibitory postsynaptic events (diIPSCs) between pairs of individually recorded GC axons or somas and PCs, some of which were connected by monosynaptic excitation, while others were not. If FFI wiring is specific, diIPSCs are expected only in connected PCs; whereas diIPSCs should not be present in these PCs if FFI is laterally wired from individual GCs. However, we found single GC-elicited diIPSCs with similar probabilities irrespective of the presence of monosynaptic excitation. This observation suggests that the wiring of FFI between individual GCs and PCs is independent of the direct excitation. Therefore, the randomly distributed FFI contributes to the hippocampal signal sparsification by setting the general excitability of the CA3 depending on the overall activity of GCs.


Subject(s)
CA3 Region, Hippocampal/physiology , Dentate Gyrus/physiology , Inhibitory Postsynaptic Potentials/physiology , Neurons/physiology , Animals , Female , Male , Neural Pathways/physiology , Patch-Clamp Techniques , Rats, Wistar , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...