Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 11(3): 1157-1165, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911833

ABSTRACT

The aquaponics production system integrates hydroponics and recirculatory aquaculture system for the simultaneous production of plants and fish. At a time, such as the postpandemic era, the aquaponics system represents an efficient green farming and eco-friendly alternative to sustainable agricultural production. In this review, the history and development of the production systems were traced vis-a-vis its pros and cons. Although there has been much dispute about the origin of the system, the numerous records of developmental attempts in history have all led to the current complexity of the systems and their efficiency. Water conservation, improved performance, food security, less pollution, and low energy consumption are some of the advantages identified in the use of aquaponics systems for food production. Challenges to the domestication of the system, however, include moderately high start-up capital, the need for stable electricity to operate the system, nutrient availability, as well as treatment of diseases in the system. Although the aquaponics production system could be a panacea for food security in Africa, modalities for the domestication of this technology are largely not in place, hence the need for some government interventions in this regard.

2.
Vet Sci ; 7(3)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932756

ABSTRACT

This study evaluated the effects of cooking for different hydrothermal-treatment durations (10, 20, 30 and 40 min) on the proximate composition, amino acid profile, fatty acid composition and organoleptic parameters of filets of African catfish Clarias gariepinus (Burchell, 1822). Filets of the fish were prepared from market size African catfish with similar breeding history. Parameters of the processed filet under the different hydrothermal durations were also compared against a raw-unprocessed control group except during organoleptic analysis. The results obtained revealed a significant increase in protein, fat and ash content until the 30th minute of hydrothermal processing (p ≤ 0.05). Beyond this processing time, protein and fat significantly reduced while ash remains unaffected. The same trend was observed for most essential/non-essential amino acids isolated as well as the prominent saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids. In all, the raw control group consistently recorded the least values of nutritional components. The perception of assessors was, however, found to be similar (p ≥ 0.05) in terms of organoleptic parameters regardless of the duration of the processing time of the filets. It was concluded that cooking the African catfish filet using the hydrothermal method should not be extended beyond 30 min.

3.
Food Sci Nutr ; 8(5): 2307-2315, 2020 May.
Article in English | MEDLINE | ID: mdl-32405388

ABSTRACT

Aquaponics is known to be a smart way of producing fish and crops simultaneously; however, there is a paucity of information about the extents of this system's efficiency over other conventional methods of food production. Thus, this study was designed to evaluate the performance of a catfish-pumpkin aquaponics system in comparison with recirculatory and static aquaculture systems (for fish performance), as well as irrigated and nonirrigated systems (for pumpkin performance). Results obtained showed that the production of fish in the aquaponics system was 29% and 75% more efficient than recirculatory and static aquaculture systems, respectively. The survival of the fish was also significantly improved probably due to better water quality in the aquaponics system. With respect to pumpkin production, yield in the aquaponics system was about five times the performance in irrigated land and eleven times those in nonirrigated land. This study gives definitive evidence to support the efficiency of the aquaponics system over other conventional food production methods.

4.
Sci Rep ; 10(1): 2425, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051528

ABSTRACT

This study investigated the use of electric-shock in inducing triploidy in African catfish Clarias gariepinus. To achieve this, three voltages (9, 12, 21 V) were applied for different durations (3, 5, 10 min). The shock was initiated approximately three minutes after fertilization followed by incubation in ambient temperature. After incubation, hatchability and survival rates were determined while ploidy status of the treatment fishes was confirmed in one-month-old fingerlings using the exclusive triploid range of the erythrocyte major axis previously reported for the same species (11.9-14.9 µm) and by cytogenetic analysis of the chromosome. The results showed triploidy were achieved in 10 to 85% of the treatment groups. A consistent trend of decrease in hatchability and an increase in triploidy rate was observed with increased electroporation voltages and shock durations. The mean erythrocyte major axis length of triploid progenies (3n = 84) was observed to be between 11.3-14.6 µm and was higher than the range of 7.0-10.5 µm recorded for diploid progenies (2n = 56). It was concluded that electric shock can be used to induce triploidy in African catfish C. gariepinus.


Subject(s)
Catfishes/genetics , Electroporation , Triploidy , Animals , Catfishes/physiology , Diploidy , Electroporation/methods , Erythrocytes/cytology , Erythrocytes/metabolism , Female , Fertilization , Male
SELECTION OF CITATIONS
SEARCH DETAIL