Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 139(7): 2549-2552, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28151661

ABSTRACT

A novel hydrogen storage system based on the hydrogen release from catalytic dehydrogenative coupling of methanol and 1,2-diamine is demonstrated. The products of this reaction, N-formamide and N,N'-diformamide, are hydrogenated back to the free amine and methanol by a simple hydrogen pressure swing. Thus, an efficient one-pot hydrogen carrier system has been developed. The H2 generating step can be termed as "amine reforming of methanol" in analogy to the traditional steam reforming. It acts as a clean source of hydrogen without concurrent production of CO2 (unlike steam reforming) or CO (by complete methanol dehydrogenation). Therefore, a carbon neutral cycle is essentially achieved where no carbon capture is necessary as the carbon is trapped in the form of formamide (or urea in the case of primary amine). In theory, a hydrogen storage capacity as high as 6.6 wt % is achievable. Dehydrogenative coupling and the subsequent amide hydrogenation proceed with good yields (90% and >95% respectively, with methanol and N,N'-dimethylethylenediamine as dehydrogenative coupling partners).

2.
J Am Chem Soc ; 139(2): 566-570, 2017 01 18.
Article in English | MEDLINE | ID: mdl-27983827

ABSTRACT

Formation of methanol and hydrocarbon derivatives from CO2 and H2, their simplest molecular building blocks, under biocompatible conditions is proposed. Alternate panspermia of similar extraterrestrially formed and observed hydrocarbons to earth is also discussed. The simple molecular building blocks derived from CO2 and H2 are carbon sources in the initial stage of biological evolution of cells leading to life's origin.


Subject(s)
Biological Evolution , Carbon Dioxide/chemistry , Carbon/chemistry , Methanol/chemistry
3.
J Am Chem Soc ; 138(22): 6905-11, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27045758

ABSTRACT

Astrophysical observations show similarity of observed abiological "organics"-i.e., hydrocarbons, their derivatives, and ions (carbocations and carbanions)-with studied terrestrial chemistry. Their formation pathways, their related extraterrestrial hydrocarbon chemistry originating from carbon and other elements after the Big Bang, their parent hydrocarbon and derivative (methane and methanol, respectively), and transportation of derived building blocks of life by meteorites or comets to planet Earth are discussed in this Perspective. Their subsequent evolution on Earth under favorable "Goldilocks" conditions led to more complex molecules and biological systems, and eventually to humans. The relevance and significance of extraterrestrial hydrocarbon chemistry to the limits of science in relation to the physical aspects of evolution on our planet Earth are also discussed.

4.
J Am Chem Soc ; 138(5): 1717-22, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26760052

ABSTRACT

Astrophysically observed extraterrestrial molecular matter contains, besides hydrogen and water, methane and methanol as the most abundant species. Feasible pathways and chemical aspects of their formation as well as of derived hydrocarbon homologues and their ions (carbocations and carbanions) are discussed on the basis of observed similarities with our studied terrestrial chemistry. The preferred pathway for converting extraterrestrial methane according to Ali et al. is based on CH5(+) and Olah's related nonclassical carbonium ion chemistry. On the basis of the observed higher reactivity of methanol compared with methane in various chemical reactions, a feasible new pathway is proposed for the conversion of extraterrestrial methanol to hydrocarbons, their derivatives, and carbocations together with a possible connection with methonium ion-based chemistry.

5.
Org Biomol Chem ; 14(1): 85-92, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26611810

ABSTRACT

A simple and expedient method for the synthesis of 3-methylene-isoindolin-1-ones 4 under aqueous phase-transfer conditions has been developed. Starting from 2-iodobenzamides 1 and (silyl)alkynes, the products are obtained in high yields and short reaction times (30 min) with the use of inexpensive CuCl/PPh3 catalyst system in the presence of n-Bu4NBr (TBAB) as a phase-transfer agent. Terminal alkynes are conveniently "unmasked" upon in situ desilylation under the reaction conditions. Alkynes possessing heterocyclic moieties were also found as amenable substrates. Furthermore, a one-pot process starting from 2-iodobenzamides 1, aryl halides (bromides or iodides) and trimethylsilylacetylene (TMSA) as a convenient acetylene surrogate was also shown to be feasible under Pd/Cu catalysis.

6.
J Am Chem Soc ; 138(3): 778-81, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26713663

ABSTRACT

A highly efficient homogeneous catalyst system for the production of CH3OH from CO2 using pentaethylenehexamine and Ru-Macho-BH (1) at 125-165 °C in an ethereal solvent has been developed (initial turnover frequency = 70 h(-1) at 145 °C). Ease of separation of CH3OH is demonstrated by simple distillation from the reaction mixture. The robustness of the catalytic system was shown by recycling the catalyst over five runs without significant loss of activity (turnover number > 2000). Various sources of CO2 can be used for this reaction including air, despite its low CO2 concentration (400 ppm). For the first time, we have demonstrated that CO2 captured from air can be directly converted to CH3OH in 79% yield using a homogeneous catalytic system.

7.
J Comput Chem ; 37(1): 70-7, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26192716

ABSTRACT

The rearrangement pathways of the equilibrating tertiary carbocations, 2,3-dimethyl-2-butyl cation (C6H13(+), 1), 2,3,3-trimethyl-2-butyl cation (C7H15(+), 5) and 2,3-dimethyl-2-pentyl cation (C7H15(+), 8 and 9) were investigated using the ab initio/GIAO-CCSD(T) (13)C NMR method. Comparing the calculated and experimental (13)C NMR chemical shifts of a series of carbocations indicates that excellent prediction of δ(13)C could be achieved through scaling. In the case of symmetrical equilibrating cations (1 and 5) the Wagner-Meerwein 1,2-hydride and 1,2-methide shifts, respectively, produce the same structure. This indicates that the overall (13)C NMR chemical shifts are conserved and independent of temperature. However, in the case of unsymmetrical equilibrating cations (8 and 9) the Wagner-Meerwein shift produces different tertiary structures, which have slightly different thermodynamic stabilities and, thus, different spectra. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level structure 8 is only 90 calories/mol more stable than structure 9. Based on computed (13)C NMR chemical shift calculations, mole fractions of these isomers were determined by assuming the observed chemical shifts are due to the weighted average of the chemical shifts of the static ions.

8.
Org Lett ; 17(24): 6170-3, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26636718

ABSTRACT

An efficient microwave-assisted protocol for the synthesis of 2-/3-methylthiochroman-4-ones by superacid-catalyzed alkylation followed by cyclic acylation (cyclization via intramolecular acylation) is described. Using easily accessible benzenethiols and crotonic acid/methacrylic acid with triflic acid (as catalyst of choice for needed optimal acidity), the reaction was tuned toward the formation of the cyclized products in good selectivity and yield. A mechanism involving the formation of carbenium-carboxonium superelectrophilic species is suggested.


Subject(s)
Chromones/chemical synthesis , Crotonates/chemical synthesis , Methacrylates/chemical synthesis , Microwaves , Phenols/chemical synthesis , Sulfhydryl Compounds/chemical synthesis , Catalysis , Chromones/chemistry , Crotonates/chemistry , Cyclization , Methacrylates/chemistry , Molecular Structure , Phenols/chemistry , Sulfhydryl Compounds/chemistry
9.
J Am Chem Soc ; 137(27): 8720-9, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26086090

ABSTRACT

Catalysts based on suitable metal oxide supports, such as NiO/MgO and CoO/MgO, were shown to be active for single step bi-reforming, the combined steam and dry reforming of methane or natural gas with H2O and CO2 exclusively to metgas (CO-2H2) for efficient methanol synthesis. Reactions were carried out in a tubular flow reactor under pressures up to 42 bar at 830-910 °C. Using a CH4 to steam to CO2 ratio of ∼3:2:1 in the gas feed, the H2/CO ratio of 2:1 was achieved, which is desired for subsequent methanol synthesis. The needed 2/1 steam/CO2 feed ratio together with the reaction heat for the endothermic bi-reforming can be conveniently obtained by the complete combustion of a quarter part of the overall used methane (natural gas) with oxygen of the air (oxidative bi-reforming). Complete combustion of a part of methane followed by bi-reforming leads to the production of metgas (H2/CO in 2:1 mol ratio) for self-sufficient exclusive methanol synthesis. The long sought after but elusive efficient and selective oxygenation of methane to methanol is thus achieved in an effective and economic way without any oxidation byproduct formation according to CH4 + 1/2O2 → CH3OH.

10.
J Phys Chem A ; 119(22): 5762-9, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25964993

ABSTRACT

Using the MP2, CCSD(T), and DFT (B3LYP) methods, the structures and energies of the 2-butyl cation (C4H9(+)) were calculated. Energetically, the C-C hyperconjugated structure 1 and hydrogen-bridged structure 2 were found to be almost identical at all levels. The (13)C NMR chemical shifts of 1 and 2 were computed by the GIAO-CCSD(T) method using different geometries. On the basis of calculated relative energies and calculated (13)C NMR chemical shifts, an equilibrium involving 1 and 2 (in a 50:50 ratio) seemed likely responsible for the experimentally observed (13)C NMR chemical shifts in superacid solutions at -80 °C. However, on the basis of computed and experimental frequencies the hydrogen-bridged structure 2 is most likely responsible for the experimentally observed frequencies in the solid state at -125 °C.

11.
ChemSusChem ; 8(8): 1442-51, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25824142

ABSTRACT

Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced).


Subject(s)
Formates/chemistry , Hydrogen/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Solvents/chemistry , Amines/chemistry , Bicarbonates/chemistry , Carbon Dioxide/chemistry , Catalysis , Hydrogen-Ion Concentration , Hydrogenation , Models, Molecular , Molecular Conformation , Pressure
12.
Angew Chem Int Ed Engl ; 54(8): 2322-3, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25620623

ABSTRACT

Paul von Ragué Schleyer, Graham Perdue Professor at the University of Georgia passed away on November 21, 2014. Schleyer was an eminent and prolific physical organic chemist, whose pioneering contributions included the application of computational chemistry to broad fields of physical organic, inorganic, organometallic, and mechanistic chemistry concepts.

13.
Angew Chem Int Ed Engl ; 53(43): 11575-8, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25146595

ABSTRACT

The trifluoromethanide anion is the postulated key intermediate in nucleophilic trifluoromethylation reactions. However, for more than six decades, the trifluoromethanide anion was widely believed to exist only as a short-lived transient species in the condensed phase. It has now been prepared in bulk for the first time in THF solution. The trifluoromethanide anion with the [K(18-crown-6)](+) cation was unequivocally characterized by low-temperature (19)F and (13)C NMR spectroscopy. Its intermediacy in nucleophilic trifluoromethylation reactions was directly evident by its reaction chemistry with various electrophilic substrates. Variable-temperature NMR spectroscopy, along with quantum mechanical calculations, support the persistence of the trifluoromethanide anion.


Subject(s)
Anions/chemistry , Fluorine/chemistry , Magnetic Resonance Spectroscopy , Methylation
14.
J Am Chem Soc ; 136(29): 10418-31, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24979676

ABSTRACT

The introduction of the CF3 group on the C9 atom in quinidine can significantly increase the conformational interconversion barrier of the cinchona alkaloid scaffold. With this modification the conformational behavior of cinchona alkaloids in various solvents can be conveniently investigated via (19)F NMR spectroscopy. Based on the reliable conformational distribution information obtained, the accuracy of both theoretical (PCM) and empirical (Kamlet-Taft) solvation models has been assessed using linear free energy relationship methods. The empirical solvation model was found to provide accurate prediction of solvent effects, while PCM demonstrated a relatively low reliability in the present study. Utilizing similar empirical solvation models along with Karplus-type equations, the conformational behavior of quinidine and 9-epi-quinidine has also been investigated. A model SN2 reaction has been presented to reveal the important role of solvent-induced conformational behavior of cinchona alkaloids in their reactivity.

15.
Chem Soc Rev ; 43(23): 7995-8048, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-24935751

ABSTRACT

Starting with coal, followed by petroleum oil and natural gas, the utilization of fossil fuels has allowed the fast and unprecedented development of human society. However, the burning of these resources in ever increasing pace is accompanied by large amounts of anthropogenic CO2 emissions, which are outpacing the natural carbon cycle, causing adverse global environmental changes, the full extent of which is still unclear. Even through fossil fuels are still abundant, they are nevertheless limited and will, in time, be depleted. Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion. The energy needed for the reduction of CO2 can come from any renewable energy source such as solar and wind. Methanol, the simplest C1 liquid product that can be easily obtained from any carbon source, including biomass and CO2, has been proposed as a key component of such an anthropogenic carbon cycle in the framework of a "Methanol Economy". Methanol itself is an excellent fuel for internal combustion engines, fuel cells, stoves, etc. It's dehydration product, dimethyl ether, is a diesel fuel and liquefied petroleum gas (LPG) substitute. Furthermore, methanol can be transformed to ethylene, propylene and most of the petrochemical products currently obtained from fossil fuels. The conversion of CO2 to methanol is discussed in detail in this review.

16.
ChemSusChem ; 7(5): 1386-97, 2014 May.
Article in English | MEDLINE | ID: mdl-24644023

ABSTRACT

Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle.


Subject(s)
Air , Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Polyamines/chemistry , Adsorption , Climate Change , Kinetics , Molecular Structure , Particle Size , Recycling , Surface Properties
17.
J Am Chem Soc ; 136(7): 2851-7, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24494822

ABSTRACT

Nine propargylic acetates, bearing a stereogenic center (-C*HXR(2)) adjacent to the electrophilic carbon atom, were prepared and subjected to SN1-type substitution reactions with various silyl nucleophiles employing bismuth trifluoromethanesulfonate [Bi(OTf)3] as the Lewis acid. The diastereoselectivity of the reactions was high when the alkyl group R(2) was tertiary (tert-butyl), irrespective of the substituent X. Products were formed consistently with a diastereomeric ratio larger than 95:5 in favor of the anti-diastereoisomer. If the alkyl substitutent R(2) was secondary, the diastereoselectivity decreased to 80:20. The reaction was shown to proceed stereoconvergently, and the relative product configuration was elucidated. The reaction outcome is explained by invoking a chiral propargylic cation as an intermediate, which is preferentially attacked by the nucleophile from one of its two diastereotopic faces. Density functional theory (DFT) calculations suggest a preferred conformation in which the group R(2) is almost perpendicular to the plane defined by the three substituents at the cationic center, with the nucleophile approaching the electrophilic center opposite to R(2). Transition states calculated for the reaction of allyltrimethylsilane with two representative cations support this hypothesis. Tertiary propargylic cations with a stereogenic center (-C*HXR(2)) in the α position were generated by ionization of the respective alcohol precursors with FSO3H in SO2ClF at -80 °C. Nuclear magnetic resonance (NMR) spectra were obtained for five cations, and the chemical shifts could be unambiguously assigned. The preferred conformation of the cations as extracted from nuclear Overhauser experiments is in line with the preferred conformation responsible for the reaction of the secondary propargylic cations.

18.
Chemistry ; 20(3): 831-8, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24338902

ABSTRACT

α-Fluoroalkenoates and 4-fluoro-5-isoxazolidinones are of vast interest due to their potential biological applications. We now demonstrate the syntheses of (E)-α-fluoroalkenoates and 4-fluoro-5-isoxazolidinones by the reactions between nitrones and α-fluoro-α-bromoacetate. By altering N-substituents in nitrones, (E)-α-fluoroalkenoates and 4-fluoro-5-isoxazolidinones can be achieved, respectively, with high chemo- and stereoselectivities. Experimental and computational studies have been conducted to elucidate the reaction mechanisms. Linear free energy relationship studies further revealed that the N-substituent effects are primarily of electronic origin.


Subject(s)
Alkenes/chemistry , Fluorine/chemistry , Isoxazoles/chemistry , Nitrogen Oxides/chemistry , Alkenes/chemical synthesis , Crystallography, X-Ray , Halogenation , Isoxazoles/chemical synthesis , Kinetics , Molecular Conformation , Stereoisomerism , Temperature , Thermodynamics
19.
Org Lett ; 16(1): 54-7, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24295125

ABSTRACT

Direct N-difluoromethylation of imidazoles and benzimidazoles has been achieved using TMS-CF3 (the Ruppert-Prakash reagent) under neutral conditions. Difluoromethylated products were obtained in good-to-excellent yields. Inexpensive, commercially available starting materials, neutral conditions, and shorter reaction times are advantages of this methodology. Reactions are accessible through conventional as well as microwave irradiation conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...