Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2433, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38286826

ABSTRACT

The present work aimed to assess the potential effect of sericin/propolis/fluorouracil nanoformula against colorectal cancer (CRC) (the fourth most common cause of cancer-related mortalities). A novel anti-cancerous formula of the synthesized sericin/propolis nanoparticles was developed and tested both in vitro (using Caco-2 cell line) and in vivo (in experimentally induced colorectal cancer animal models). The combination index of the prepared nanoformula proved that the combination between sericin/propolis nanoparticles and 5-fluorouracil demonstrated the highest synergistic effect (0.86), with dose reduction index (DRI) of the chemotherapeutic drug reaching 1.49. The mechanism of action of the prepared nanoformula revealed that it acts through the inhibition of the PI3K/AKT/mTOR signaling pathway and consequently inhibiting cancerous cells proliferation. Treatment and prophylactic studies of both sericin and propolis showed increased TBARS (Thiobarbituric Acid Reactive Substance) formation, downregulated BCL2 (B-cell lymphoma 2) and activated BAX, Caspase 9 and Caspase 3 expression. The prepared nanoformula decreased the ROS (Reactive Oxygen Species) production in vivo owing to PI3K/AKT/mTOR pathway inhibition and FOXO-1 (Forkhead Box O1) activation that resulted in autophagy/apoptosis processes stimulation. The potent anticancer effect of the prepared nanoformula was further emphasized through the in vivo histopathological studies of experimentally induced tumors. The newly formulated sericin/propolis/fluorouracil nanoparticles exhibited clear-cut cytotoxic effects toward tumor cells with provided evidence for the prophylactic effect.


Subject(s)
Colorectal Neoplasms , Propolis , Sericins , Humans , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Propolis/pharmacology , Sericins/pharmacology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Caco-2 Cells , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Colorectal Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor
2.
Sci Rep ; 13(1): 21871, 2023 12 10.
Article in English | MEDLINE | ID: mdl-38072846

ABSTRACT

Bacterial exopolysaccharides are homopolymeric or heteropolymeric polysaccharides with large molecular weights (10-1000 kDa). Exopolysaccharides' functional uses and potential have revolutionized the industrial and medicinal industries. Hence, the aim of the present study was to optimize the production of bacterial exopolysaccharide and apply it as a capping agent for selenium nanoparticles synthesis. Exopolysaccharide (EPS) producing Lactic acid bacteria (LAB) were isolated from dairy products then biochemically characterized and assessed for their potential antimicrobial effect. The most potent EPS producer was identified as Lactiplantibacillus plantarum strain A2 with accession number OP218384 using 16S rRNA sequencing. Overall, FTIR data of the extracted EPS revealed similarity with amylopectin spectrum. 1H NMR spectrum revealed an α-anomeric configuration of the glycosidic linkage pattern in the polysaccharides while the 13C NMR spectrum can also be separated into two main portions, the anomeric carbons region (δ 98-102 ppm) and the non-anomeric carbons region (δ 60-81 ppm). Antimicrobial activity of the produced EPS showed maximum activity against Staphylococcus aureus, MRSA, Enterobacter aerogenes, Klebsiella pneumoniae and Candida albicans respectively. The EPS capsule layer surrounding the bacterial cells was detected by TEM study. Optimization of EPS production was evaluated using Taguchi design, trial 23 reported the highest biomass yield and EPS output (6.5 and 27.12 g/L respectively) with 2.4 and 3.3 folds increase (from the basal media) respectively. The optimized exopolysaccharide was used as a capping and stabilizing agent for selenium nanoparticles (EPS-SeNPs) synthesis. Zeta potential, size and PDI of the synthesized nanoparticles were - 19.7 mV, 45-65 nm and 0.446 respectively with strong bactericidal and fungicidal effect against the tested pathogens. Complete microbial growth eradication was recorded after 6, 8 and 10 h against Staphylococcus aureus, Candida albicans and Klebsiella pneumoniae respectively. EPS-SeNPs showed a potent antioxidant effect reached 97.4% and anticancer effect against A549 lung cancer cell line (IC50 reached 5.324 µg/mL). EPS-SeNPs inhibited cancerous cell growth at S phase. Moreover, molecular studies revealed the anti-apoptotic activity of Bcl2's was inhibited and Bax was activated. The present investigation successfully synthesized selenium nanoparticles through bacterial EPS with significantly high antimicrobial and anticancer activity.


Subject(s)
Anti-Infective Agents , Lung Neoplasms , Nanoparticles , Selenium , Humans , Selenium/pharmacology , Selenium/chemistry , RNA, Ribosomal, 16S/genetics , Polysaccharides, Bacterial/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Nanoparticles/chemistry , Staphylococcus aureus/genetics , Candida albicans , Bacteria/genetics
3.
Sci Rep ; 13(1): 22940, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38135693

ABSTRACT

Nanotechnology holds significant promise for the development of novel and necessary products that enhance human health. Pharmacology and nanotechnology have contributed to developing advanced and highly effective drugs for cancer treatment and combating microbial infections. The microbiological effectiveness against the variety of examined microorganisms was assessed using the time killer curve, scanning electron microscopy (SEM), MIC techniques, and the agar well diffusion method. SEM was utilized to enhance the analysis of the mechanisms underlying the bio-interface interaction and intracellular localization of calcium oxide nanoparticles (CaONPs). The MTT test was used to examine the cytotoxicity of CaONP anticancer activity in various cancer cells, including colon, breast, and hepatic cells. The efficacy of CaONPs as an anticancer medication was elucidated by analyzing the gene expression of both treated and untreated cancer cells. MIC and MBC of CaONPs against Escherichia coli and Staphylococcus epidermidis were 150, 150, 150, and 200 µg/ml, respectively. The MIC and MFC of CaONPs against Candida albicans were 200 µg/ml and 250 µg/ml, respectively. The IC50 values of various CaONPs vary depending on the type of cancer cells. The gene expression analysis of breast cancer cells undergoing treatment revealed the identification of several cancer-controlling genes, namely BAX, BCL2, P53, TERT, KRAS1, KRAS2, and RB1. The study demonstrated the notable antibacterial efficacy of CaONPs, highlighting their potential as cancer therapies.


Subject(s)
Metal Nanoparticles , Neoplasms , Humans , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Calcium Compounds , Neoplasms/drug therapy
4.
J Genet Eng Biotechnol ; 21(1): 150, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38015326

ABSTRACT

BACKGROUND: The ability of actinomycetes to produce bioactive secondary metabolites makes them one of the most important prokaryotes. Marine actinomycetes are one of the most important secondary metabolites producers used for pharmaceuticals and other different industries. RESULTS: In this study, the promising actinomycetes were isolated from Abu-Qir Bay. Four different media named as starch nitrate, starch casein, glycerol asparagine, and glycerol glycine were used as a preliminary experimental media to study the role of the medium components on the counts of actinomycetes in sediment samples. The results indicated that starch casein medium reported the highest counts (30-63 CFU/g) in all the tested sites. Lower counts were detected on starch nitrate and glycerol asparagine. On the other hand, glycerol glycine medium gave the lowest counts (15-48 CFU/g). Abu-Qir8 harbored the highest average count of actinomycetes (63 CFU/g), followed by Abu-Qir1 (48 CFU/g). The lower counts were detected in Abu-Qir5 and Abu-Qir7 (26 and 29 CFU/g, respectively). A total of 12 pure obtained actinomycetes isolates were subjected to morphological, physiological, and biochemical characterization. The selected actinobacterial isolates were subjected to numerical analysis, and the majority of isolates were grouped into four main clusters (A, B, C, & D), and each of them harbored two isolates; additionally, four isolates did not cluster at this similarity level. Isolate W4 was carefully chosen as the most promising pigment and antimicrobial agent's producer; the produced pigment was extracted and optimized by statistical experiments (PBD & BBD) and was tested for its anti-inflammatory activity. The results showed anti-inflammatory effect and prevented the denaturation of BSA protein at a concentration much higher than the safe dose and increased with increasing the pigment concentration. CONCLUSION: Marine actinomycetes play a vital role in the production of novel and important economic metabolites that have many industrial and pharmaceuticals applications. Streptomyces genera are the most important actinomycetes that produce important metabolites as previously reported.

5.
Front Microbiol ; 14: 1180463, 2023.
Article in English | MEDLINE | ID: mdl-37779717

ABSTRACT

Introduction: Lactose intolerance is a widespread problem that affects people of many different races all over the world. The following pharmacological supplements can improve the lives of those who suffer from this issue. Methods: This work focused on lactase producer isolation and statistical design (Plackett-Burman, and BOX-Behnken) to maximize the effectiveness of environmental factors. A lactase-producing bacterium was chosen from a discovery of 100 strains in soil that had previously been polluted with dairy products. Plackett-Burman investigated fifteen variables. Results: The most critical variables that lead to increased lactase synthesis are glucose, peptone, and magnesium sulfate (MgSO4). The ideal process conditions for the creation of lactase yield among the stated variables were then determined using a BOX-Benken design. To establish a polynomial quadratic relationship between the three variables and lactase activity, the Box-Behnken design level was used. The EXCEL-solver nonlinear optimization technique was used to predict the best form for lactase production. The ideal temperature and pH levels have been determined, both before and after the lactase purification process, to achieve the highest performance of isolated lactase. Conclusion: According to this study, Bacillus licheniformis is a perfect supply of the lactase enzyme (ß -Galactosidase), It can be used as a product to assist people who have health issues due to lactose intolerance.

6.
Molecules ; 28(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836831

ABSTRACT

Hospitalized patients are severely impacted by delayed wound healing. Recently, there has been a growing focus on enhancing wound healing using suitable dressings. Lavandula angustifolia essential oil (LEO) showed potential antibacterial, anti-inflammatory, and wound healing properties. However, the prepared gold nanoparticles possessed multifunctional properties. Consequently, the present investigation aimed to synthesize a novel nanosystem consisting of nano-Lavandula angustifolia essential oil and gold nanoparticles prepared through ultrasonic nanoemulsifying techniques in order to promote wound healing and combat bacterial infection. LEO showed potent antibacterial activity against Klebsiella pneumoniae, MRSA and Staphylococcus aureus with minimum inhibitory concentration (MIC) values of 32, 16 and 16 µg/mL, respectively, while exhibiting low activity against Proteus mirabilis. Interestingly, the newly formulated nano-gold/nano-Lavandula angustifolia penetrated the preformed P. mirabilis biofilm with a full eradication of the microbial cells, with MIC and MBEC (minimal biofilm eradication concentration) values reaching 8 and 16 µg/mL, respectively. The cytotoxic effect of the novel nanoformula was also assessed against WI-38 fibroblasts vero (normal) cells (IC50 = 0.089 mg/mL) while nano-gold and nano-Lavandula angustifolia showed higher results (IC50 = 0.529, and 0.209 mg/mL, respectively). Nano-gold/nano-Lavandula angustifolia formula possessed a powerful wound healing efficacy with a 96.78% wound closure. These findings revealed that nano-gold/nano-Lavandula angustifolia nanoemulsion can inhibit bacterial growth and accelerate the wound healing rate.


Subject(s)
Lavandula , Metal Nanoparticles , Oils, Volatile , Humans , Gold/pharmacology , Anti-Bacterial Agents/pharmacology , Oils, Volatile/pharmacology , Bacteria
7.
Molecules ; 28(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298980

ABSTRACT

Despite recent scientific advances, the global load of bacterial disease remains high and has been established against a backdrop of increasing antimicrobial resistance. Therefore, there is a pressing need for highly effective and natural antibacterial agents. In the present work, the antibiofilm effect provided by essential oils was evaluated. Of these, cinnamon oil extract showed potent antibacterial and antibiofilm activities against Staphylococcus aureus at an MBEC of 75.0 µg/mL. It was revealed that benzyl alcohol, 2-propenal-3-phenyl, hexadecenoic acid, and oleic acid were the major components of the tested cinnamon oil extract. In addition, the interaction between the cinnamon oil and colistin showed a synergistic effect against S. aureus. Cinnamon oil that had been combined with colistin was encapsulated by liposomes to enhance the essential oil's chemical stability, demonstrating a particle size of 91.67 nm, a PDI of 0.143, a zeta potential of -0.129 mV, and an MBEC of 50.0 µg/mL against Staphylococcus aureus. Scanning electron microscopy was employed to observe the morphological changes in the Staphylococcus aureus biofilm that was treated with the encapsulated cinnamon oil extract/colistin. As a natural and safe option, cinnamon oil exhibited satisfactory antibacterial and antibiofilm performance. The application of liposomes further improved the stability of the antibacterial agents and extended the essential oil release profile.


Subject(s)
Cinnamomum zeylanicum , Oils, Volatile , Staphylococcus aureus , Colistin/pharmacology , Liposomes/pharmacology , Anti-Bacterial Agents/pharmacology , Oils, Volatile/pharmacology , Biofilms , Microbial Sensitivity Tests
8.
Membranes (Basel) ; 13(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37367808

ABSTRACT

Accelerated wound healing in infected skin is still one of the areas where current therapeutic tactics fall short, which highlights the critical necessity for the exploration of new therapeutic approaches. The present study aimed to encapsulate Eucalyptus oil in a nano-drug carrier to enhance its antimicrobial activity. Furthermore, in vitro, and in vivo wound healing studies of the novel nano-chitosan/Eucalyptus oil/cellulose acetate electrospun nanofibers were investigated. Eucalyptus oil showed a potent antimicrobial activity against the tested pathogens and the highest inhibition zone diameter, MIC, and MBC (15.3 mm, 16.0 µg/mL, and 256 µg/mL, respectively) were recorded against Staphylococcus aureus. Data indicated a three-fold increase in the antimicrobial activity of Eucalyptus oil encapsulated chitosan nanoparticle (43 mm inhibition zone diameter against S. aureus). The biosynthesized nanoparticles had a 48.26 nm particle size, 19.0 mV zeta potential, and 0.45 PDI. Electrospinning of nano-chitosan/Eucalyptus oil/cellulose acetate nanofibers was conducted, and the physico-chemical and biological properties revealed that the synthesized nanofibers were homogenous, with a thin diameter (98.0 nm) and a significantly high antimicrobial activity. The in vitro cytotoxic effect in a human normal melanocyte cell line (HFB4) proved an 80% cell viability using 1.5 mg/mL of nano-chitosan/Eucalyptus oil/cellulose acetate nanofibers. In vitro and in vivo wound healing studies revealed that nano-chitosan/Eucalyptus oil/cellulose acetate nanofibers were safe and efficiently enhanced the wound-healing process through enhancing TGF-ß, type I and type III collagen production. As a conclusion, the manufactured nano-chitosan/Eucalyptus oil/cellulose acetate nanofiber showed effective potentiality for its use as a wound healing dressing.

9.
Microb Cell Fact ; 22(1): 94, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147660

ABSTRACT

Due to the therapeutic importance of microbial pigments, these pigments are receiving the attention of researchers. In this present study 60 isolates were isolated from sediments of Abu-Qir coast of the Mediterranean sea, Alexandria, Egypt, out of which 12 were considered as pigmented actinomycetes. Streptomyces sp. W4 was characterized by small round green pigmented colonies when grown on starch-casein agar medium. The green pigment was extracted using a mixture of acetone-methanol (7:3 v/v). The antimicrobial, antioxidant, antiviral, and anticancer activities of the green pigment produced by Streptomyces sp.W4 were investigated. The pigment was characterized using FTIR, Raman spectroscopy, EDX and GC-MS. The results revealed that the pigment has antibacterial and antifungal activity and also showed inhibition of HAV 78% but its antiviral activity against the Adenovirus was weak. The results proved the safety of the pigment toward normal cells and anticancer activity against three different cancer cell lines HepG-2 (liver cancer cell line), A549 (lung cancer cell line), and PAN1 (pancreas cancer cell line). The pigment was combined with 9 antibiotics and then tested against the Gram-negative bacterium Enterococcus faecalis using disc diffusion bioassay. LEV showed an antagonistic effect, while CXM and CIP showed a synergistic effect.


Subject(s)
Anti-Infective Agents , Streptomyces , Antioxidants/pharmacology , Antioxidants/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Egypt , Anti-Infective Agents/metabolism , Anti-Bacterial Agents/chemistry , Streptomyces/metabolism
10.
Int J Biol Macromol ; 242(Pt 1): 124759, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37150365

ABSTRACT

The amount of cellulosic materials is large and may lead to environmental pollution, so they can be converted into useful materials for use in food or energy. Statistical design (Plackett-Burman and Box-Behnken) was the main topic of this study and was used to optimize the effect of environmental factors on cellulase production by Aspergillus niger. Cellulase production using Plackett-Burman was 6.86-fold higher than the production of cellulase using the basal medium. B0X-Benken showed an increase in the cellulase production equal to 18 times compared to the basal medium, where the cellulase produced had an activity equal to 79.4 U/mL/min. Ammonium sulfate precipitation was applied to the crude enzyme, followed by sequential fractionation with an Amicon system. The Amicon was used to demonstrate the final volume, total enzyme activity, specific activity, purification fold, and yield of cellulase (partially purified enzyme). Numerous cellulolytic enzymes are abundant in Aspergillus species. All of the data showed that Aspergillus sp. might be a reliable source of industrially and economically useful cellulases. By statistically calculating the relevance of a large number of elements in one experiment using a multifactorial statistical design, time may be saved while still maintaining the validity of each component.


Subject(s)
Cellulase , Cellulases , Aspergillus niger , Research Design
11.
Molecules ; 28(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36985405

ABSTRACT

The spread of antibiotic-resistant opportunistic microbes is a huge socioeconomic burden and a growing concern for global public health. In the current study, two endophytic fungal strains were isolated from Mangifera Indica roots and identified as Aspergillus niger MT597434.1 and Trichoderma lixii KU324798.1. Secondary metabolites produced by A. niger and T. lixii were extracted and tested for their antimicrobial activity. The highest activity was noticed against Staphylococcus aureus and E. coli treated with A. niger and T. lixii secondary metabolites, respectively. A. niger crude extract was mainly composed of Pentadecanoic acid, 14-methyl-, methyl ester and 9-Octadecenoic acid (Z)-, methyl ester (26.66 and 18.01%, respectively), while T. lixii crude extract's major components were 2,4-Decadienal, (E,E) and 9-Octadecenoic acid (Z)-, and methyl ester (10.69 and 10.32%, respectively). Moreover, a comparative study between the fungal extracts and dicationic pyridinium iodide showed that the combination of A. niger and T. lixii secondary metabolites with dicationic pyridinium iodide compound showed a synergistic effect against Klebsiella pneumoniae. The combined formulae inhibited the bacterial growth after 4 to 6 h through cell wall breakage and cells deformation, with intracellular components leakage and increased ROS production.


Subject(s)
Escherichia coli , Iodides , Iodides/metabolism , Oleic Acid/metabolism , Aspergillus niger/metabolism , Complex Mixtures/metabolism
12.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232955

ABSTRACT

Infected wounds are a major threat among diabetic patients. Technological advancements are currently increasing the number of new adjunctive therapies that may be potent agents for speeding recovery, lowering the amputation rate and limiting infection recurrences. A novel formula with promising antibacterial activity, namely sericin/propolis/Amoxicillin nanoparticles, was assessed as a potent treatment of infected wounds in normal and diabetic rats. Skin wound healing efficiency was assessed through wound healing scorings, bacterial load assessment and histological examinations. It was revealed that upon using sericin/propolis/Amoxicillin nanoparticles, complete wound healing was successfully achieved after 10 and 15 days postinjury for nondiabetic and diabetic rats, respectively. However, the bacterial load in the induced infected wounds was extremely low (0-10 CFU/mL) after 15 days post-treatment. The histological studies revealed that the dermis was more organized with new matrix deposition, and mature collagen fibers were observed among the treated animal groups. The present study is the first preclinical study which reported the importance of silk sericin in the form of nano-sericin/propolis loaded with Amoxicillin as an effective treatment against bacterial wound infections.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Propolis , Sericins , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Collagen/pharmacology , Propolis/pharmacology , Rats , Sericins/pharmacology , Wound Healing
13.
Molecules ; 27(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36014407

ABSTRACT

The pharmaceutical research sector's inability to produce new drugs has made it difficult to keep up with the rate at which microbial resistance is developing. Recently, nanotechnology and its combinations with natural products have been the saviors against multidrug resistant bacteria. In the present investigation, different Egyptian and Saudi date cultivars were extracted and then phytochemically analyzed and tested for possible antimicrobial activities against multidrug resistant (MDR) microbes. The results revealed that extract of the flesh of fresh "Hayany" fruit (Egyptian date) showed the highest antimicrobial activity, with high levels of phenolic, flavonoid, and tannin concentrations (538.578 µg/mL, 28.481 µg/mL, and 20.888 µg/mL, respectively) and high scavenging activity, with an IC50 reaching 10.16 µg/mL. The highest synergistic activity was found between fresh "Hayany" fruit extract and amikacin. Novel nano-fresh fruit of "Hayany" date extract was synthesized using a ball-milling technique. The vesicle size was 21.6 nm, while the PDI and zeta potential were 0.32 and +38.4 mV, respectively. The inhibition zone diameters of nano-fresh fruit of "Hayany" date extract/amikacin reached 38 mm and 34 mm, with complete microbial eradication after 9 h and 6 h, against Candida albicans and Staphylococcus aureus, respectively. In conclusion, date fruit extract could be used as a candidate bioactive compound in the fight against infectious diseases.


Subject(s)
Anti-Infective Agents , Nanoparticles , Phoeniceae , Amikacin , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/analysis , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Fruit/chemistry , Phoeniceae/chemistry , Plant Extracts/chemistry
14.
Pathogens ; 11(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015052

ABSTRACT

Meningitis caused by Klebsiella pneumoniae and Pseudomonas aeruginosa has lately become a prevalent cause of the central nervous system (CNS) infection. Bacterial invasion into the subarachnoid space prompts the releasing mechanism of chemokines and pro-inflammatory cytokines. The present study aimed to compare K. pneumoniae and P. aeruginosa meningitis concerning the memory, pro-inflammatory mediators and brain histopathological changes at different time intervals in adult Albino rats. The animals were sacrificed at three time intervals comprising 5, 10 and 15 days after meningitis induction. Cerebrospinal fluid (CSF) culture, relative brain weights, complete blood analysis, biochemical markers, levels of cytokine, chemokine and brain-derived neurotrophic factor (BDNF), neurotransmitter acetylcholine esterase (AChE) activity, and the brain histopathology of the infected rats in comparison to those in the control group were assessed. There was a significant increase in the levels of pro-inflammatory cytokines and chemokines including TNF-α, IL-1ß, IL-6 and AChE after 5 days of bacterial meningitis infection with both K. pneumoniae and P. aeruginosa. The histopathological analysis of the cerebral cortex in the P. aeruginosa meningitis model at different time intervals revealed abundant numbers of dilated and congested blood vessels with severe hemorrhage, cerebral infarct, intracellular and extracellular vacuoles, and gliosis. Fifteen days post infection, a significant reduction in the brain tissue weight was observed. The meningitis model employing P. aeruginosa exhibited more evident time-dependent severity compared to K. pneumoniae, which may advocate its validity as a simple and effective research model to study meningitis of the CNS. This model may be utilized for further investigation to ascertain the molecular and biological association between bacterial meningitis and the development of the pathophysiological hallmarks underlying Alzheimer's disease in preclinical and clinical setups. Clinical extrapolation based on studies employing animal disease models should be carefully interpreted.

15.
Biology (Basel) ; 11(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36009797

ABSTRACT

Bacterial pigments (e.g., melanin and carotenoids) are considered to be among the most important secondary metabolites due to their various pharmacological activities against cancer and microbial resistance. Different pigmented bacterial strains were isolated from soil samples from El Mahmoudiyah governance and screened for their antimicrobial activity. The most promising pigment producer was identified as Micrococcus lylae MW407006; furthermore, the produced pigment was identified as echinenone (ß-carotene pigment). The pigment production was optimized through a central composite statistical design to maximize the biomass production, pigment concentration, and the antimicrobial activity. It was revealed that the most significant fermentation parameters were the glucose (as a carbon source) and asparagine (as a nitrogen source) concentrations. Nano-echinenone was synthesized using the ball milling technique, characterized, and finally assessed for potential antimicrobial, antioxidant, and antitumor activities. The data revealed that the synthesized nano-echinenone had higher antimicrobial activity than the crude pigment. The cytotoxic potency of echinenone and nano-echinenone was investigated in different cell lines (normal and cancer cells). The inhibition of cell proliferation and induction of cell death was observed in Caco-2 and Hep-G2 cells. The data proved that nano-echinenone is a suitable candidate for use as a safe antimicrobial and anti-hepatocellular-carcinoma agent.

16.
Membranes (Basel) ; 12(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629862

ABSTRACT

Healthcare textiles are gaining great attention in the textile industry. Electrospun nanofibers are considered the golden soldiers due to their strength, flexibility, and eco-friendly properties. The present study aimed to evaluate the potency of polyvinyl alcohol (PVA) nanofibers loaded with newly biosynthesized silver nanoparticles (Ag-NPs) as a wound healing dressing. Chocolate-band snail (Eobania vermiculata) mucus (which is part of the Mollusca defense system) was used as a novel reducing and stabilizing agent. Data indicated the effectiveness of Eobania vermiculata's mucus in silver nanoparticle synthesis after a 24 h incubation time. The biosynthesized AgNPs-SM showed a 13.15 nm particle size, -22.5 mV ζ potential, and 0.37 PDI, which proved the stability of the synthesized nanoparticles. Eobania vermiculata mucus and AgNPs-SM showed potent antibacterial activity, especially against Pseudomonas aeruginosa. The electrospinning technique was applied in the fabrication of PVA/AgNPs-SM nanofibers, which were homogenous with a fine diameter of about 100-170 nm and showed a significantly high antimicrobial activity. In vitro and in vivo studies revealed that PVA/AgNPs-SM nanofibers were safe and efficiently enhanced the wound healing process (typical histological picture of the proliferative phase with compact and well aligned collagen fibers in the dermal tissue after 12 days) together with bacterial growth inhibition in the infected skin area.

17.
Saudi J Biol Sci ; 29(3): 1832-1841, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280562

ABSTRACT

Chitosan integrated nanoparticles of clotrimazole and Egyptian Vitis vinifera juice extract was evaluated in order to maximize the antifungal activity and reduce the gross side effects. In the present study Egyptian Thompson Seedless Vitis vinifera and Clotrimazole (Cz) loaded chitosan nanoparticles (NCs/VJ/Cz) showed a promising antifungal effect with average inhibition zone diameters of 74 and 72 mm against Candida albicans and Aspergillus niger respectively. NCs/VJ /Cz was stable with significant drug entrapment efficiency reached 94.7%; PDI 0.24; zeta potential value + 31 and average size 35.4 nm diameter. Ex vivo and in vivo evaluation of skin retention, permeation and wound repair potentialities of NCs/VJ /Cz ointment was examined by experimental rats with wounded skin fungal infection. Data proved the ability of NCs/VJ /Cz to gradually release the drugs in a sustained manner with complete wound healing effect and tissue repair after 7 days administration. As a conclusion NCs/VJ /Cz ointment can be used as a novel anti-dermatophytic agent with high wound healing capacity.

18.
Nanomedicine (Lond) ; 2020 May 15.
Article in English | MEDLINE | ID: mdl-32410497

ABSTRACT

Aim: The present study aimed to formulate novel cremophore-decorated chitosan nanoparticles of colistin, integrated with Siwa propolis extract, to solve bacterial resistance to colistin. Materials & methods: The novel nanoformula was prepared using an incorporation method. Physicochemical assessment and in vivo studies of the selected nanoformulations were performed. Results: The nanoformulation exhibited a nanosize of 48.3 nm, high ζ potential (43.6 mV), high entrapment efficiency (75%) and complete bacterial growth eradication within 2 h (minimum inhibitory concentration = 6.25 µg/ml). Histological examination showed that incorporation of colistin into the nanoformulation could successfully prevent its nephrotoxicity. Conclusion: Tailoring of proper nanocarrier could successfully revert bacteria from being colistin-resistant to colistin-sensitive. The developed nanoformulation can be considered as a potential antibacterial agent in pneumonia treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...