Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Front Plant Sci ; 14: 1327163, 2023.
Article in English | MEDLINE | ID: mdl-38259935

ABSTRACT

Forests are critical in the terrestrial carbon cycle, and the knowledge of their response to ongoing climate change will be crucial for determining future carbon fluxes and climate trajectories. In areas with contrasting seasons, trees form discrete annual rings that can be assigned to calendar years, allowing to extract valuable information about how trees respond to the environment. The anatomical structure of wood provides highly-resolved information about the reaction and adaptation of trees to climate. Quantitative wood anatomy helps to retrieve this information by measuring wood at the cellular level using high-resolution images of wood micro-sections. However, whereas large advances have been made in identifying cellular structures, obtaining meaningful cellular information is still hampered by the correct annual tree ring delimitation on the images. This is a time-consuming task that requires experienced operators to manually delimit ring boundaries. Classic methods of automatic segmentation based on pixel values are being replaced by new approaches using neural networks which are capable of distinguishing structures, even when demarcations require a high level of expertise. Although neural networks have been used for tree ring segmentation on macroscopic images of wood, the complexity of cell patterns in stained microsections of broadleaved species requires adaptive models to accurately accomplish this task. We present an automatic tree ring boundary delineation using neural networks on stained cross-sectional microsection images from beech cores. We trained a UNETR, a combined neural network of UNET and the attention mechanisms of Visual Transformers, to automatically segment annual ring boundaries. Its accuracy was evaluated considering discrepancies with manual segmentation and the consequences of disparity for the goals of quantitative wood anatomy analyses. In most cases (91.8%), automatic segmentation matched or improved manual segmentation, and the rate of vessels assignment to annual rings was similar between the two categories, even when manual segmentation was considered better. The application of convolutional neural networks-based models outperforms human operator segmentations when confronting ring boundary delimitation using specific parameters for quantitative wood anatomy analysis. Current advances on segmentation models may reduce the cost of massive and accurate data collection for quantitative wood anatomy.

4.
Sci Rep ; 11(1): 3099, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542350

ABSTRACT

Population persistence is strongly determined by climatic variability. Changes in the patterns of climatic events linked to global warming may alter population dynamics, but their effects may be strongly modulated by biotic interactions. Plant populations interact with each other in such a way that responses to climate of a single population may impact the dynamics of the whole community. In this study, we assess how climate variability affects persistence and coexistence of two dominant plant species in a semiarid shrub community on gypsum soils. We use 9 years of demographic data to parameterize demographic models and to simulate population dynamics under different climatic and ecological scenarios. We observe that populations of both coexisting species may respond to common climatic fluctuations both similarly and in idiosyncratic ways, depending on the yearly combination of climatic factors. Biotic interactions (both within and among species) modulate some of their vital rates, but their effects on population dynamics highly depend on climatic fluctuations. Our results indicate that increased levels of climatic variability may alter interspecific relationships. These alterations might potentially affect species coexistence, disrupting competitive hierarchies and ultimately leading to abrupt changes in community composition.

5.
Ann Bot ; 127(7): 919-929, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33640955

ABSTRACT

BACKGROUND AND AIMS: Plants in dry Mediterranean mountains experience a double climatic stress: at low elevations, high temperatures coincide with water shortage during summer, while at high elevations temperature decreases and water availability increases. Cushion plants often act as nurses by improving the microclimate underneath their canopies, hosting beneficiary species that may reciprocally modify their benefactors' microenvironment. We assess how the nurse cushion plant Arenaria tetraquetra subsp. amabilis adjusts its hydraulic system to face these complex abiotic and biotic constraints. METHODS: We evaluated intra-specific variation and co-ordination of stem xylem anatomy, leaf functional traits and plant architecture in response to elevation, aspect and the presence of beneficiary species in four A. tetraquetra subsp. amabilis populations in the Sierra Nevada mountains, southern Spain. KEY RESULTS: Xylem anatomical and plant architectural traits were the most responsive to environmental conditions, showing the highest mutual co-ordination. Cushions were more compact and had smaller, more isolated conductive vessels in the southern than in the northern aspect, which allow minimization of the negative impacts of more intense drought. Only vessel size, leaf mass per area and terminal branch length varied with elevation. Nurse cushions co-ordinated plant architecture and xylem traits, having higher canopy compactness, fewer leaves per branch and fewer, more isolated vessels than non-nurse cushions, which reflects the negative effects of beneficiary plants on nurse water status. In non-nurse cushions, plant architecture co-ordinated with leaf traits instead. The interacting effects of aspect and elevation on xylem traits showed that stress due to frost at high elevation constrained xylem anatomy in the north, whereas stress due to drought had a parallel effect in the south. CONCLUSIONS: Trait co-ordination was weaker under more demanding environmental conditions, which agrees with the hypothesis that trait independence allows plants to better optimize different functions, probably entailing higher adjustment potential against future environmental changes.


Subject(s)
Trees , Xylem , Droughts , Plant Leaves , Plants , Water
6.
Ecol Appl ; 31(3): e02288, 2021 04.
Article in English | MEDLINE | ID: mdl-33423382

ABSTRACT

Climate warming is driving an advance of leaf unfolding date in temperate deciduous forests, promoting longer growing seasons and higher carbon gains. However, an earlier leaf phenology also increases the risk of late frost defoliation (LFD) events. Compiling the spatiotemporal patterns of defoliations caused by spring frost events is critical to unveil whether the balance between the current advance in leaf unfolding dates and the frequency of LFD occurrence is changing and represents a threaten for the future viability and persistence of deciduous forests. We combined satellite imagery with machine learning techniques to reconstruct the spatiotemporal patterns of LFD events for the 2003-2018 period in the Iberian range of European beech (Fagus sylvatica), at the drier distribution edge of the species. We used MODIS Vegetation Index Products to generate a Normalized Difference Vegetation Index (NDVI) time series for each 250 × 250 m pixel in a total area of 1,013 km2 (16,218 pixels). A semi-supervised approach was used to train a machine learning model, in which a binary classifier called Support Vector Machine with Global Alignment Kernel was used to differentiate between late frost and non-late frost pixels. We verified the obtained estimates with photointerpretation and existing beech tree-ring chronologies to iteratively improve the model. Then, we used the model output to identify topographical and climatic factors that determined the spatial incidence of LFD. During the study period, LFD was a low recurrence phenomenon that occurred every 15.2 yr on average and showed high spatiotemporal heterogeneity. Most LFD events were condensed in 5 yr and clustered in western forests (86.5% in one-fifth of the pixels) located at high elevation with lower than average precipitation. Elevation and longitude were the major LFD risk factors, followed by annual precipitation. The synergistic effects of increasing drought intensity and rising temperature combined with more frequent late frost events may determine the future performance and distribution of beech forests. This interaction might be critical at the beech drier range edge, where the concentration of LFD at high elevations could constrain beech altitudinal shifts and/or favor species with higher resistance to late frosts.


Subject(s)
Fagus , Climate Change , Forests , Incidence , Machine Learning , Seasons , Trees
7.
Ann Bot ; 125(7): 1101-1112, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32173741

ABSTRACT

BACKGROUND AND AIMS: Plants have the potential to adjust the configuration of their hydraulic system to maintain its function across spatial and temporal gradients. Species with wide environmental niches provide an ideal framework to assess intraspecific xylem adjustments to contrasting climates. We aimed to assess how xylem structure in the widespread species Nothofagus pumilio varies across combined gradients of temperature and moisture, and to what extent within-individual variation contributes to population responses across environmental gradients. METHODS: We characterized xylem configuration in branches of N. pumilio trees at five sites across an 18° latitudinal gradient in the Chilean Andes, sampling at four elevations per site. We measured vessel area, vessel density and the degree of vessel grouping. We also obtained vessel diameter distributions and estimated the xylem-specific hydraulic conductivity. Xylem traits were studied in the last five growth rings to account for within-individual variation. KEY RESULTS: Xylem traits responded to changes in temperature and moisture, but also to their combination. Reductions in vessel diameter and increases in vessel density suggested increased safety levels with lower temperatures at higher elevation. Vessel grouping also increased under cold and dry conditions, but changes in vessel diameter distributions across the elevational gradient were site-specific. Interestingly, the estimated xylem-specific hydraulic conductivity remained constant across elevation and latitude, and an overwhelming proportion of the variance of xylem traits was due to within-individual responses to year-to-year climatic fluctuations, rather than to site conditions. CONCLUSIONS: Despite conspicuous adjustments, xylem traits were coordinated to maintain a constant hydraulic function under a wide range of conditions. This, combined with the within-individual capacity for responding to year-to-year climatic variations, may have the potential to increase forest resilience against future environmental changes.


Subject(s)
Fagales , Xylem , Chile , Forests , Trees , Water
8.
Front Plant Sci ; 10: 1413, 2019.
Article in English | MEDLINE | ID: mdl-31737025

ABSTRACT

Extreme climatic events, such as late frosts in spring during leaf flush, have considerable impacts on the radial growth of temperate broadleaf trees. Albeit, all broadleaved species are potentially vulnerable, damage depends on the particularities of the local climate, the species, and its phenology. The impact of late spring frosts has been widely investigated in the Northern Hemisphere, but the potential incidence in Southern Hemisphere tree species is still poorly known. Here, we reconstruct spring frost occurrence at 30 stands of the deciduous tree Nothofagus pumilio in its northern range of distribution in the Patagonian Andes. We identified tree ring-width reductions at stand level not associated with regional or local drought events, matching unusual minimum spring temperatures during leaf unfolding. Several spring frosts were identified along the northern distribution of N. pumilio, being more frequent in the more continental Argentinean forests. Spring frost in 1980 had the largest spatial extent. The spring frosts in 1980 and 1992 also induced damages in regional orchards. Spring frost damage was associated with (i) a period of unusually warm temperatures at the beginning of leaf unfolding, followed by (ii) freezing temperatures. This study helps expand our understanding of the climatic constraints that could determine the future growth and dynamics of Andean deciduous forests and the potential use of tree-rings as archives of extreme events of spring frosts in northern Patagonia.

10.
Tree Physiol ; 34(12): 1411-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25430882

ABSTRACT

Tocochromanols are the most abundant lipid-soluble antioxidants in plants. Among them, α-tocopherol (α-Toc) shows a particularly high sensitivity to environmental stressors and its content is used as a stress biomarker even in non-photosynthetic tissues. Nevertheless, the presence of tocochromanols has not been described yet in the xylem of woody plants, even when their functions regarding cell membrane protection and the transport of photoassimilates may be crucial in this tissue and despite its potential utility in dendrometabolomics. Considering all these, we aimed to determine the presence and distribution of tocochromanols in the xylem of woody plants, to examine their responsiveness to high temperature and to evaluate their potential as environmental bioindicators. The analysis of 29 phyllogenetically diverse species showed that α-Toc is the most abundant and frequent tocochromanol in the xylem and is ubiquitously present in all the studied species, with a concentration ranging from 0.5 to 39.3 µg g(-1) of dry weight. α-Tocopherol appeared to be mainly located in the parenchyma rays and was found in both the sapwood and the heartwood, suggesting that it is present even in dead parenchyma cells. The levels of α-Toc in the xylem did not change in response to locally induced xylem heating, but responded positively to the 3-year moving average of annual precipitation. The present findings suggest that α-Toc may be linked to changes in climatic stress. This should enhance further research on the environmental controls of α-Toc variation in the xylem as a first step towards a deeper understanding of dendrometabolomics.


Subject(s)
Climate , Droughts , Rain , Stress, Physiological , Trees/metabolism , Wood/metabolism , alpha-Tocopherol/metabolism , Adaptation, Physiological , Antioxidants/metabolism , Biological Transport , Climate Change , Hot Temperature , Water , Xylem
11.
Oecologia ; 176(1): 273-83, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24958369

ABSTRACT

In order to understand the impact of drought and intrinsic water-use efficiency (iWUE) on tree growth, we evaluated the relative importance of direct and indirect effects of water availability on secondary growth and xylem anatomy of Juniperus thurifera, a Mediterranean anisohydric conifer. Dendrochronological techniques, quantitative xylem anatomy, and (13)C/(12)C isotopic ratio were combined to develop standardized chronologies for iWUE, BAI (basal area increment), and anatomical variables on a 40-year-long annually resolved series for 20 trees. We tested the relationship between iWUE and secondary growth at short-term (annual) and long-term (decadal) temporal scales to evaluate whether gains in iWUE may lead to increases in secondary growth. We obtained a positive long-term correlation between iWUE and BAI, simultaneously with a negative short-term correlation between them. Furthermore, BAI and iWUE were correlated with anatomical traits related to carbon sink or storage (tracheid wall thickness and ray parenchyma amount), but no significant correlation with conductive traits (tracheid lumen) was found. Water availability during the growing season significantly modulated tree growth at the xylem level, where growth rates and wood anatomical traits were affected by June precipitation. Our results are consistent with a drought-induced limitation of tree growth response to rising CO2, despite the trend of rising iWUE being maintained. We also remark the usefulness of exploring this relationship at different temporal scales to fully understand the actual links between iWUE and secondary growth dynamics.


Subject(s)
Droughts , Juniperus/growth & development , Xylem/cytology , Models, Biological , Rain , Spain , Time Factors , Water/metabolism , Xylem/metabolism
12.
Oecologia ; 173(2): 483-92, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23483277

ABSTRACT

Spatio-temporal variability in fruit production (masting) has been regarded as a key mechanism to increase plant fitness by reducing seed predation. However, considerably more effort has been devoted into understanding the consequences of temporal rather than spatial variations in fruit crop for plant fitness. In order to simultaneously evaluate both components, we quantify fruit production and pre-dispersal damage by three arthropod species (mites, chalcid wasps and moths) in the Spanish juniper (Juniperus thurifera) during 3 years in a spatially explicit context. Our aims were to assess (1) the interaction between fruit production and pre-dispersal fruit damage by arthropods, (2) the potential interference or competition between arthropods, and (3) the form of the phenotypic selection exerted by arthropods on fruit traits considering the spatial context. Arthropods damaged a substantial fraction of fruits produced by Spanish juniper with levels of damage showing sharp inter-annual variations. Fruit damage by mites was negatively related to yearly fruit crop and positively correlated at individual trees fruiting in consecutive years. Increased interspecific interference was an additional consequence of reduced fruit availability during small crop years. During a masting year, fruit damage by less mobile species such as mites was negatively affected by tree crop size, and no spatial structure was observed for mite damage. The incidence of chalcid wasps was low, so the spatial pattern of seed predation was unclear, and no preferences for fruit or seed traits were detected. Conversely, moths selected larger fruits and their incidence on trees was spatially aggregated up to 20 m, with predation levels being negatively affected by fruit abundance at the patch level, suggesting a positive density-dependent effect of neighbors on fruit output. These results highlight the importance of including the spatial component to understand complex species interactions at local scales.


Subject(s)
Food Chain , Juniperus/physiology , Mites/physiology , Moths/physiology , Selection, Genetic , Wasps/physiology , Animals , Fruit/growth & development , Fruit/physiology , Herbivory , Juniperus/genetics , Juniperus/growth & development , Population Dynamics , Seasons , Seeds/growth & development , Seeds/physiology , Spain
13.
New Phytol ; 198(2): 486-495, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23316689

ABSTRACT

Tree-ring anatomy reflects the year-by-year impact of environmental factors on tree growth. Up to now, research in this field has mainly focused on the hydraulic architecture, with ray parenchyma neglected despite the growing recognition of its relevance for xylem function. Our aim was to address this gap by exploring the potential of the annual patterns of xylem parenchyma as a climate proxy. We constructed ring-width and ray-parenchyma chronologies from 1965 to 2004 for 20 Juniperus thurifera trees growing in a Mediterranean continental climate. Chronologies were related to climate records by means of correlation, multiple regression and partial correlation analyses. Ray parenchyma responded to climatic conditions at critical stages during the xylogenetic process; namely, at the end of the previous year's xylogenesis (October) and at the onset of earlywood (May) and latewood formation (August). Ray parenchyma-based chronologies have potential to complement ring-width chronologies as a tool for climate reconstructions. Furthermore, medium- and low-frequency signals in the variation of ray parenchyma may improve our understanding of how trees respond to environmental fluctuations and to global change.


Subject(s)
Climate , Juniperus/anatomy & histology , Juniperus/growth & development , Trees/anatomy & histology , Trees/growth & development , Xylem/anatomy & histology , Xylem/growth & development , Geography , Mediterranean Region , Regression Analysis , Time Factors
14.
New Phytol ; 185(2): 471-80, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19895415

ABSTRACT

*Seasonal radial-increment and xylogenesis data can help to elucidate how climate modulates wood formation in conifers. Few xylogenesis studies have assessed how plastic xylogenesis is in sympatric conifer species from continental Mediterranean areas, where low winter temperatures and summer drought constrain growth. *Here, we analysed intra-annual patterns of secondary growth in sympatric conifer species (Juniperus thurifera, Pinus halepensis and Pinus sylvestris). Two field sites (xeric and mesic) were evaluated using dendrometers, microcores and climatic data. *A bimodal pattern of xylogenesis characterized by spring and autumn precipitation and subsequent cambial reactivation was detected in J. thurifera at both study sites and in P. halepensis at the xeric site, but was absent in P. sylvestris where growth was largely controlled by day length. In the xeric site J. thurifera exhibited an increased response to water availability in autumn relative to P. halepensis and summer cambial suppression was more marked in J. thurifera than in P. halepensis. *Juniperus thurifera exhibited increased plasticity in its xylogenesis pattern compared with sympatric pines, enabling this species to occupy sites with more variable climatic conditions. The plastic xylogenesis patterns of junipers in drought-stressed areas may also provide them with a competitive advantage against co-occurring pines.


Subject(s)
Adaptation, Physiological , Climate , Juniperus/growth & development , Pinus/growth & development , Plant Stems/growth & development , Wood/growth & development , Xylem/growth & development , Cold Temperature , Dehydration , Droughts
15.
New Phytol ; 182(3): 687-697, 2009.
Article in English | MEDLINE | ID: mdl-19210720

ABSTRACT

Tree features may modulate the sensitivity of radial growth to climate, leading to a nonuniform response. Age-related increases in climatic sensitivity have been observed repeatedly. Sex-related climatic sensitivity is also possible because of the long-term differential reproductive cost between the sexes. This study analysed the simultaneous effects of age and sex on the sensitivity of tree-ring growth to climate. Ring widths were measured from 50 female and 50 male Juniperus thurifera trees, 50-350 yr old, growing under a Mediterranean continental climate. Response functions were calculated based on tree-ring chronologies and monthly climatic records. Climatic sensitivity decreased with increasing age. Young trees (50-100 yr) were the most climatically sensitive to June-July precipitation, which affected growth positively. We found a significant interaction between age and sex in the climatic response of J. thurifera, with young females the most sensitive to summer water stress. Our results suggest that age-dependent climatic sensitivity can be determined by site-specific limiting environmental conditions and species-specific architectural and physiological adjustments during ontogeny. This study supports that the different ontogenetic stages of J. thurifera differ in their root structural traits and that sex-related sensitivity to summer drought may be attributable to less efficient water use by females.


Subject(s)
Climate , Juniperus/growth & development , Trees/growth & development , Analysis of Variance , Rain , Regression Analysis , Seasons , Spain , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...