Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters











Publication year range
1.
Nat Prod Bioprospect ; 14(1): 46, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158793

ABSTRACT

Biotransformation is a process in which molecules are modified in the presence of a biocatalyst or enzymes, as well as the metabolic alterations that occur in organisms from exposure to the molecules. Microbial biotransformation is an important process in natural product drug discovery as novel compounds are biosynthesised. Additionally, biotransformation products offer compounds with improved efficacy, solubility, reduced cytotoxic and allows for the understanding of structure activity relationships. One of the driving forces for these impeccable findings are associated with the presence of cytochrome P450 monooxygenases that is present in all organisms such as mammals, bacteria, and fungi. Numerous fungal strains have been used and reported for their ability to biotransform different compounds. This review focused on studies using Alternaria species as biocatalysts in the biotransformation of natural product compounds. Alternaria species facilitates reactions that favour stereoselectivity, regioselectivity under mild conditions. Additionally, microbial biotransformation products, their application in food, pharmaceutical and agricultural sector is discussed in this review.

2.
Front Pharmacol ; 15: 1424346, 2024.
Article in English | MEDLINE | ID: mdl-39070783

ABSTRACT

In this study, the antidiabetic activities of Lepionurus sylvestris Blume extract (LSB) in rats was investigated. The in vitro antidiabetic properties of LSB was evaluated using α-amylase, α-glucosidase and DPP-IV inhibitory assays, while the antioxidant assay was analysed using DPPH, ABTS and FRAP assays. Type 2 diabetes was with high-fructose/streptozotocin, and the diabetic animals were treated with LSB for 5 weeks. At the end of the experiment, the effects of LSB were evaluated via insulin level, lipid profile and hepatorenal function biomarkers. The level of oxido-inflammatory parameters, histopathology and insulin immunohistochemical staining in the pancreas was evaluated. Diabetic rats manifested significant increases in the blood glucose level, food/water intake, lipid profiles, hepatorenal function biomarkers, as well as a marked decreases in the body weight and serum insulin levels. Histopathological and insulin immunohistochemical examination also revealed decreased pancreatic beta cells and insulin positive cells, respectively. These alterations were associated with significant increases in malondialdehyde, TNF-α and IL-1ß, in addition to significant declines in GSH, SOD and CAT activities. LSB significantly reduced blood glucose level, glucose intolerance, serum lipids, restored altered hepatorenal and pancreatic functions in the treated diabetic rats. Further, LSB showed antioxidant and anti-inflammatory activities by reducing malondialdehyde, TNF-α, IL-1ß, and increasing antioxidant enzymes activities in the pancreatic tissues. A total of 77 secondary metabolites were tentatively identified in the UPLC-Q-TOF-MS analysis of LSB. Overall, these findings provides insight into the potentials of LSB as an antidiabetic agent which may be associated to the plethora bioactive compounds in the plant.

3.
Food Res Int ; 189: 114573, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876600

ABSTRACT

Food proteins and their peptides play a significant role in the important biological processes and physiological functions of the body. The peptides show diverse biological benefits ranging from anticancer to antihypertensive, anti-obesity, and immunomodulatory, among others. In this review, an overview of food protein digestion in the gastrointestinal tract and the mechanisms involved was presented. As some proteins remain resistant and undigested, the multifarious factors (e.g. protein type and structure, microbial composition, pH levels and redox potential, host factors, etc.) affecting their colonic fermentation, the derived peptides, and amino acids that evade intestinal digestion are thus considered. The section that follows focuses on the mechanisms of the peptides with anticancer, antihypertensive, anti-obesity, and immunomodulatory effects. As further considerations were made, it is concluded that clinical studies targeting a clear understanding of the gastrointestinal stability, bioavailability, and safety of food-based peptides are still warranted.


Subject(s)
Anti-Obesity Agents , Antihypertensive Agents , Antineoplastic Agents , Dietary Proteins , Digestion , Peptides , Humans , Antihypertensive Agents/pharmacology , Dietary Proteins/metabolism , Peptides/pharmacology , Antineoplastic Agents/pharmacology , Anti-Obesity Agents/pharmacology , Gastrointestinal Tract/metabolism , Animals , Immunologic Factors/pharmacology , Gastrointestinal Microbiome/drug effects , Biological Availability , Immunomodulating Agents/pharmacology
4.
Heliyon ; 10(10): e31104, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778960

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the joints of the human body and is projected to have a prevalence age-standardized rate of 1.5 million new cases worldwide by 2030. Several conventional and non-conventional preventive and therapeutic interventions have been suggested but they have their side effects including nausea, abdominal pain, liver damage, ulcers, heightened blood pressure, coagulation, and bleeding. Interestingly, several food-derived peptides (FDPs) from both plant and animal sources are increasingly gaining a reputation for their potential in the management or therapy of RA with little or no side effects. In this review, the concept of inflammation, its major types (acute and chronic), and RA identified as a chronic type were discussed based on its pathogenesis and pathophysiology. The conventional treatment options for RA were briefly outlined as the backdrop of introducing the FDPs that potentiate therapeutic effects in the management of RA.

5.
Phytochem Anal ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816275

ABSTRACT

INTRODUCTION: The fruit wastes, in particular agricultural wastes, are considered potential and inexpensive sources of bioactive compounds. OBJECTIVE: The current study was aimed at the preparation of an optimized extract of sugarcane bagasse using microwave-assisted extraction (MAE) technology and comparative evaluation of chemical composition, antioxidant, and antidiabetic activities with extract prepared through maceration technique. METHODOLOGY: Box-Behnken Design (BDD) with response surface methodology was applied to observe interactions of three independent variables (ethanol concentrations [%], microwave power [W], and extraction time [min]) on the dependent variables (total phenolic content [TPC] and antioxidant status via 2,2-diphenyl-1-picrylhydrazyl [DPPH] to establish optimal extraction conditions. The ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis was applied for untargeted metabolite profiling, and in vitro assays were used for evaluation of the antidiabetic and antioxidant potential of the extract. Moreover, an in silico study was used to predict the interaction of five dominant compounds from the UHPLC-Q-TOF-MS profile against the dipeptidyl peptidase-IV (DPP-IV) enzyme. RESULTS: The optimal conditions for the extraction were established at 60% (v/v) ethanol, 500 W microwave power, and 5 min time with TPC 12.83 ± 0.66 mg GAE/g d.w. and DPPH 45.09 ± 0.07%. The UHPLC-Q-TOF-MS analysis revealed the presence of a total of 106 compounds in the extract. Moreover, the extract prepared through MAE technology presented higher TPC and DPPH findings than the extract prepared through maceration. Similarly, the extract was also found with good antidiabetic activity by inhibiting the DPP-IV enzyme which was also rectified theoretically by a molecular docking study. CONCLUSION: The current study presents a sustainable and an optimized approach for the preparation of sugarcane bagasse extract with functional phytoconstituents and higher antidiabetic and antioxidant activities.

6.
Br J Pharmacol ; 181(16): 2774-2793, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38644540

ABSTRACT

BACKGROUND AND PURPOSE: White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH: WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS: Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS: Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.


Subject(s)
Adipose Tissue, White , Arthritis, Experimental , Arthritis, Rheumatoid , PPAR gamma , Animals , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Humans , Rats , Arthritis, Experimental/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Male , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/drug therapy , PPAR gamma/metabolism , PPAR gamma/agonists , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Female , Rats, Inbred Lew , Adipocytes/metabolism , Adipocytes/drug effects , Adipokines/metabolism
7.
J Pharm Pharmacol ; 76(6): 681-690, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38422325

ABSTRACT

OBJECTIVES: Schisandrin B (Sch B) has been shown to possess anti-inflammatory and antioxidant properties, however, its antirheumatoid arthritis properties and potential mechanism remain unexplored. This study evaluated the potential of Sch B in adjuvant-induced arthritic (AIA) rats. METHODS: AIA was induced by injecting 0.1 ml of CFA into the paw of rats and the animals were administered with Sch B (50 mg/kg) for 28 days. The effects of Sch B were evaluated using arthritis severity, serum levels of oxido-inflammatory, and metabolic index parameters. KEY FINDINGS: Sch B eased arthritic symptoms by significantly reducing paw swelling and arthritic score and increased body weight gain. Moreover, Sch B alleviated the levels of oxido-inflammatory markers including interleukin-1 beta, interleukin-6, tumor necrosis factor alpha, nuclear factor kappa B, transforming growth factor ß1, inducible nitric oxide synthase and malonaldehyde, as well as increased the levels of superoxide dismutase, glutathione, and Nrf2. Sch B also remarkably restored the altered levels of triglyceride, aspartate aminotransferase, lactic acid, pyruvate, phosphoenolpyruvate carboxylase, glucose, hypoxia inducible factor-1 alpha, and vascular endothelial growth factor. In addition, Sch B markedly alleviated p65 expression in the treated AIA rats. CONCLUSION: This study suggests that Sch B alleviated AIA by reducing oxidative stress, inflammation, and angiogenesis.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Experimental , Cyclooctanes , Hypoxia-Inducible Factor 1, alpha Subunit , Inflammation Mediators , Lignans , Oxidative Stress , Polycyclic Compounds , Vascular Endothelial Growth Factor A , Animals , Cyclooctanes/pharmacology , Cyclooctanes/therapeutic use , Lignans/pharmacology , Lignans/therapeutic use , Oxidative Stress/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Polycyclic Compounds/pharmacology , Polycyclic Compounds/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Rats , Anti-Inflammatory Agents/pharmacology , Male , Inflammation Mediators/metabolism , Antioxidants/pharmacology , Signal Transduction/drug effects , Rats, Sprague-Dawley , Inflammation/drug therapy , Inflammation/metabolism
9.
J Inflamm Res ; 16: 4271-4285, 2023.
Article in English | MEDLINE | ID: mdl-37791116

ABSTRACT

Background: Rheumatoid arthritis (RA) patients are prone to developing different metabolic complications. Traditional Chinese Medicine attributes this uncertainty to varied syndrome types. Methods and Results: We retrospectively analyzed some serological indicators of active RA patients and healthy individuals. Randomly selected RA patients were divided into three groups according to NAMPT and SIRT1 expression levels in white blood cells (WBCs). Their disease severity and metabolic status were compared. Representative blood samples were subjected to a UPLC-MS/MS-based metabolomics analysis. Different human WBCs were treated with oleic acid and palmitic acid in vitro. The results indicated that blood glucose and lipid levels were decreased in RA patients, but their decrease was not in accordance with disease severity. Nutrients in the patients highly expressing SIRT1 were well preserved, with the lowest levels of RF and ß-CTX and the highest levels of adiponectin and resistin. Most of them exhibited cold symptoms. When SIRT1 deficiency was obvious, lipid depletion became evident, irrespective of expression levels of NAMPT. Simultaneous high-expression of SIRT1 and NAMPT coincided with the increase in production of lactic acid and the prevalence of hot symptoms. Despite the low levels of IL-6, joint injuries were severe. The corresponding WBCs were especially sensitive to fatty acids anti-inflammatory treatments. The levels of CCL27, CCL11, CCL5, AKP, CRP and ESR were similar among all the groups. Conclusion: NAMPT overexpression is a risk factor for joint injuries and nutrient depletion in RA. Supplementation with lipids would exert beneficial effects on these RA patients. Its aftermath would cause even severe inflammation. Contrarily, SIRT1 up-regulation restrains inflammation and lipid depletion.

10.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836717

ABSTRACT

Ethnomedicinal plants are important sources of drug candidates, and many of these plants, especially in the Western Ghats, are underexplored. Humboldtia, a genus within the Fabaceae family, thrives in the biodiversity of the Western Ghats, Kerala, India, and holds significant ethnobotanical importance. However, many Humboldtia species remain understudied in terms of their biological efficacy, while some lack scientific validation for their traditional uses. However, Humboldtia sanjappae, an underexplored plant, was investigated for the phytochemical composition of the plant, and its antioxidant, enzyme-inhibitory, anti-inflammatory, and antibacterial activities were assessed. The LC-MS analysis indicated the presence of several bioactive substances, such as Naringenin, Luteolin, and Pomiferin. The results revealed that the ethanol extract of H. sanjappae exhibited significant in vitro DPPH scavenging activity (6.53 ± 1.49 µg/mL). Additionally, it demonstrated noteworthy FRAP (Ferric Reducing Antioxidant Power) activity (8.46 ± 1.38 µg/mL). Moreover, the ethanol extract of H. sanjappae exhibited notable efficacy in inhibiting the activities of α-amylase (47.60 ± 0.19µg/mL) and ß-glucosidase (32.09 ± 0.54 µg/mL). The pre-treatment with the extract decreased the LPS-stimulated release of cytokines in the Raw 264.7 macrophages, demonstrating the anti-inflammatory potential. Further, the antibacterial properties were also evident in both Gram-positive and Gram-negative bacteria. The observed high zone of inhibition in the disc diffusion assay and MIC values were also promising. H. sanjappae displays significant anti-inflammatory, antioxidant, antidiabetic, and antibacterial properties, likely attributable to its rich composition of various biological compounds such as Naringenin, Luteolin, Epicatechin, Maritemin, and Pomiferin. Serving as a promising reservoir of these beneficial molecules, the potential of H. sanjappae as a valuable source for bioactive ingredients within the realms of nutraceutical and pharmaceutical industries is underscored, showcasing its potential for diverse applications.


Subject(s)
Fabaceae , Plants, Medicinal , Plants, Medicinal/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Luteolin , Gram-Positive Bacteria , Gram-Negative Bacteria , Phytochemicals/pharmacology , Phytochemicals/chemistry , Ethanol/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
11.
Tissue Cell ; 85: 102254, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866152

ABSTRACT

This study investigated the protective activities of pinostrobin (PIN) against methotrexate (MTX)-induced ovarian toxicity. Female rats were administered with PIN (50 mg/kg) for 4 weeks, while MTX was administered from weeks 2-4 of PIN treatment. Serum hormonal profiles, ovarian oxidative stress, inflammatory and apoptotic biomarkers as well as ovarian histomorphometry were evaluated. MTX administration elicited profound deficit in serum progesterone and estrogen (E2) levels, while luteinizing hormone (LH) and follicle stimulating hormone (FSH) were significantly increased. Additionally, MTX administration was associated with significant increases in ovarian malondialdehyde, nitric oxide, NF-кB, TNF-α, IL-6, IL-1ß, iNOS and caspase-3 activity, as well as notable reduction in the activities of glutathione peroxidase, catalase and superoxide dismutase as well as the level of glutathione. Whereas, treatment with PIN significantly decreased serum levels of FSH and LH, as well as ovarian levels of NO, MDA, caspase 3, NF-κB, IL-1ß, IL-6, TNF-α and iNOS. PIN also significantly upregulated GSH, GPx, CAT and SOD in the ovarian tissues as well as increased serum E2 and progesterone levels compared to the MTX group. Furthermore, PIN significantly restored altered ovarian histoarchitecture in the treated group. These findings suggests that PIN exerts protective effects against MTX-triggered ovarian damages.


Subject(s)
Antioxidants , Methotrexate , Rats , Female , Animals , Antioxidants/pharmacology , Methotrexate/toxicity , Flavonoids/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/pharmacology , Progesterone/pharmacology , Oxidative Stress , Glutathione/metabolism , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , Follicle Stimulating Hormone/pharmacology
12.
Sci Rep ; 13(1): 11398, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452121

ABSTRACT

This study evaluated the cardioprotective properties of Boesenbergia rotunda extract (BrE) against doxorubicin (DOX) induced cardiotoxicity. Rats received oral gavage of BrE for 28 days and DOX (5 mg/kg/week for 3 weeks). Thereafter the animals were sacrificed, blood and cardiac samples were collected for biochemical, histological and immunohistochemical analyses. The results indicated that BrE attenuated DOX triggered body and cardiac weight loss and prevented against cardiac injury by mitigating histopathological alterations in cardiac tissues as well as serum cardiac function enzymes. BrE significantly reduced serum levels of aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), troponin T (TnT) and creatine kinase-MB (CK-MB) in DOX-treated rats. Furthermore, BrE alleviated cardiotoxicity by reducing DOX instigated oxidative stress and potentiating the level of glutathione, as well as the activities superoxide dismutase and catalase in cardiac tissues. In addition, BrE significantly decreased the characteristic indices of DOX-induced cardiac inflammation and apoptosis. Immuno-histochemical analysis revealed that BrE decreased the stain intensity of p53 and myeloperoxidase (MPO) proteins compared to the DXB alone group. In conclusion, our results indicated that BrE modulated oxidative stress, inflammation and apoptosis to attenuate DOX-induced cardiac damage.


Subject(s)
Antioxidants , Zingiberaceae , Rats , Animals , Antioxidants/metabolism , Cardiotoxicity/metabolism , Myocardium/metabolism , Doxorubicin/pharmacology , Oxidative Stress , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , Zingiberaceae/metabolism , Apoptosis
13.
Antibiotics (Basel) ; 12(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37237843

ABSTRACT

Cinnamomum species are a group of plants belonging to the Lauraceae family. These plants are predominantly used as spices in various food preparations and other culinary purposes. Furthermore, these plants are attributed to having cosmetic and pharmacological potential. Cinnamomum malabatrum (Burm. f.) J. Presl is an underexplored plant in the Cinnamomum genus. The present study evaluated the chemical composition by a GC-MS analysis and antioxidant properties of the essential oil from C. malabatrum (CMEO). Further, the pharmacological effects were determined as radical quenching, enzyme inhibition and antibacterial activity. The results of the GC-MS analysis indicated the presence of 38.26 % of linalool and 12.43% of caryophyllene in the essential oil. Furthermore, the benzyl benzoate (9.60%), eugenol (8.75%), cinnamaldehyde (7.01%) and humulene (5.32%) were also present in the essential oil. The antioxidant activity was indicated by radical quenching properties, ferric-reducing potential and lipid peroxidation inhibition ex vivo. Further, the enzyme-inhibitory potential was confirmed against the enzymes involved in diabetes and diabetic complications. The results also indicated the antibacterial activity of these essential oils against different Gram-positive and Gram-negative bacteria. The disc diffusion method and minimum inhibitory concentration analysis revealed a higher antibacterial potential for C. malabatrum essential oil. Overall, the results identified the predominant chemical compounds of C. malabatrum essential oil and its biological and pharmacological effects.

15.
Sci Rep ; 13(1): 5698, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029128

ABSTRACT

This present study investigated the protective effects of asperuloside (ASP) against cadmium-induced nephrocardiac toxicity. Rats were treated with 50 mg/kg of ASP for five weeks and CdCl2 (5 mg/kg, p.o., once daily) during the last 4 weeks of ASP treatment. The serum levels of blood urea nitrogen (BUN), creatinine (Scr), aspartate transaminase (AST), creatine kinase-MB (CK-MB), troponin T (TnT) and lactate dehydrogenase (LDH) were evealuted. Oxido-inflammatory parameters were detected via malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1ß) and nuclear factor kappa B (NF-κB). Additionally, the cardiorenal levels of caspase 3, transforming growth factor-ß (TGF-ß), α-smooth muscle actin (α-SMA), collagen IV and Bcl2 were measured by ELISA or immunohistochemical assays. The results indicated that ASP significantly decreased Cd-instigated oxidative stress, serum BUN, Scr, AST, CK-MB, TnT and LDH as well as histopathological alterations. Furthermore, ASP notably attenuated Cd-induced cardiorenal and apoptosis and fibrosis by reducing caspase 3 and TGF-ß levels, as well as reducing the stain intensity of a-SMA and collagen IV, while increasing Bcl2 intensity. These results revealed that ASP attenuated Cd induced cardiac and renal toxicity which may be attributed to reducing oxidative stress, inflammation, fibrosis and apoptosis.


Subject(s)
Cadmium Poisoning , Cadmium , Rats , Animals , Cadmium/toxicity , Caspase 3/metabolism , Oxidative Stress , Inflammation , Fibrosis , Creatine Kinase, MB Form , Apoptosis , Transforming Growth Factor beta/pharmacology , Collagen/pharmacology , Antioxidants/pharmacology
16.
Inflamm Res ; 72(5): 1021-1035, 2023 May.
Article in English | MEDLINE | ID: mdl-37016140

ABSTRACT

OBJECTIVE: This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. METHODS: HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied. RESULTS: Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV. CONCLUSION: Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation.


Subject(s)
Arthritis, Rheumatoid , Neovascularization, Pathologic , Humans , Rats , Animals , Resveratrol/pharmacology , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/genetics , Sirtuin 1/genetics , Sirtuin 1/metabolism , Lipopolysaccharides/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , Glycolysis , Guanosine Triphosphate/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
17.
Biomed Pharmacother ; 162: 114689, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058820

ABSTRACT

Mitragyna speciosa is a medicinal plant with a reputation for treating pains, diabetes as well as increasing energy and sexual desires. However, there is no scientific evidence to validate the antidiabetic effect of M. speciosa. This study investigated the antidiabetic effects of M. speciosa (Krat) ethanolic extract on fructose and streptozocin (STZ)-induced type 2 diabetic rats. In vitro antioxidant and antidiabetic effects were evaluated using DPPH, ABST, FRAP and α-glucosidase inhibitory assays. Rats with fructose/STZ induced T2D were treated with Krat (100 and 400 mg/kg) or metformin (200 mg/kg) for 5 weeks via oral gavage. Krat showed good antioxidant activity and also displayed potent α-glucosidase inhibitory activity. Administration of Krat to the diabetic rats significantly improved body weight gain, restored alterations in blood glucose level, glucose tolerance, dyslipidemia (increased cholesterol, triglycerides, low-density lipoprotein-cholesterol and reduced high-density lipoprotein), hepatorenal biomarkers alterations (alanine transaminase, aspartate transaminase, alanine phosphatase, creatinine and blood urea nitrogen) and oxidative stress indices (superoxide dismutase, glutathione and malondialdehyde)in the treated diabetic rats. Furthermore, Krat also restored pancreatic histological and increased immunohistochemical aberrations in the diabetic rats. These results for the first time demonstrated the antidiabetic and antihyperlipidemic potentials of M. speciosa, thus providing scientific reinforcement for the traditional use of the plant in the treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mitragyna , Rats , Animals , Hypoglycemic Agents/pharmacology , Antioxidants/pharmacology , alpha-Glucosidases , Blood Glucose , Plant Extracts/pharmacology , Cholesterol , Streptozocin
18.
Tissue Cell ; 81: 102035, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36753813

ABSTRACT

5-fluorouracil (5-FU) is an efficacious fluoropyrimidine antimetabolite anticancer drug, however, its clinical utility is constrained due to side effect toxicity on delicate organs, including the heart. This study thus aimed at exploring the cardioprotective potentials of naringin (NRG) against 5-FU-induced cardiotoxicity in rats. We divided Wistar rats into four experimental groups (n = 6) for the administration of NRG (100 mg/kg bw, orally) and/or 5-FU (150 mg/kg bw, intraperitoneal). NRG was administered for 10 days, while 5-FU was injected on the 8th day only. Serum troponin-I (cTn-I) and creatine kinase (CK) were estimated. Cardiac activities/level of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), malondialdehyde (MDA), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and nuclear factor-ĸB (NF-κB) and caspase-3 were determined. 5-FU markedly increased cTn-I, CK, cardiac inflammatory mediators and caspase-3 expressions, whereas antioxidant mediators decreased appreciably when compared to the control groups. Interestingly, the prophylactic administration of NRG prominently inhibited the 5-FU-provoked oxidative stress, pro-inflammation and apoptosis in the heart of rats. Histopathology confirmed the biochemical results of the heart. Therefore, NRG is a potential natural flavonoid for mitigation of 5-FU cardiotoxicity in rats.


Subject(s)
Cardiotoxicity , Fluorouracil , Rats , Animals , Cardiotoxicity/metabolism , Caspase 3/metabolism , Rats, Wistar , Fluorouracil/toxicity , Doxorubicin/pharmacology , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , NF-kappa B/metabolism
19.
Food Chem ; 414: 135691, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36808030

ABSTRACT

The dietary protein requirement for the world population that just clocked 8 billion should ideally come from the environmentally sustainable lithosphere and should be a plant-based and cost-affordable resource. Hemp proteins and peptides come to mind based upon increasing interest by consumers worldwide. We herein describe the composition and nutrition of hemp protein, including the enzymatic production of hemp peptides (HPs), which reportedly have hypoglycemic, hypocholesterolemic, antioxidative, antihypertensive, and immunomodulatory effects. The action mechanisms involved in each of the reported bioactivities are presented, while not undermining the applications or opportunities associated with HPs. The study's major goal is to compile the status of the art of the various therapeutic HPs and their prospect as drugs for multiple diseases while highlighting needed future developments. We present first the composition, nutrition, and functionality of hemp proteins, prior to reports on their hydrolysis for the production of HPs. It is concluded that HPs present excellent functional ingredients as nutraceuticals targeting hypertension and other degenerative diseases, which have yet to be capitalized upon for commercial uses.


Subject(s)
Cannabis , Cannabis/chemistry , Dietary Supplements , Peptides/chemistry , Diet , Antihypertensive Agents
20.
Phytochemistry ; 206: 113504, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36403669

ABSTRACT

Phytochemical investigation of the underground parts of Arundina graminifolia D.Don Hochr was conducted leading to the isolation of nine new glucosyloxybenzyl 2R-benzylmalate and two new glucosyloxybenzyl 2R-isobutylmalate derivatives. The compounds were purified using chromatographic techniques and their structures were deduced based on spectroscopic techniques including nuclear magnetic resonance and high-resolution mass spectrometry as well as comparing with previous literature. The antioxidant activities of the isolated compounds were also evaluated. The compounds showed potent antioxidant activities in the ABTS radical scavenging, DPPH radical scavenging and FRAP activities. Furthermore, the isolated compounds were observed to exert minimal cytotoxic effects against RAW 264.7 cell, suggesting biocompatibility as well as cytoprotective effects against hydrogen peroxide induced cell toxicity.


Subject(s)
Antineoplastic Agents , Orchidaceae , Antioxidants/pharmacology , Molecular Structure , Magnetic Resonance Spectroscopy , Orchidaceae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL