Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(4): e06739, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33869882

ABSTRACT

This study investigates the interactive effects of processing parameters on the quality of milled rice using a one-step milling machine. Also, predictive models were generated using response surface methodology. The processing parameters were moisture content (10-14 % dry basis), shaft speed of rotation (600-900 rpm), and polishing time (1-3 min). The quality parameters evaluated were milling (head rice yield, percentage broken rice, fine broken rice, and milled rice yield), cooking (optimum cooking time, kernel elongation ratio, and width expansion ratio), and sensory (flavor, aroma, appearance, texture, and overall acceptability) properties. The results showed that the interactive effects of moisture content, shaft speed, and polishing time were significant (P < 0.05) on percentage broken rice, milled rice yield, fine broken rice, optimum cooking time, kernel elongation ratio, width expansion ratio, aroma, and appearance but was not significant on head rice yield, flavor, texture, and overall acceptability. These results were similar to the regression models generated. In conclusion, the interactive effects of these processing parameters affect all the cooking properties but not all milling and sensory properties while using a one-step milling machine.

2.
Heliyon ; 6(3): e03555, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32190764

ABSTRACT

This study applied Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict the moisture ratio (MR) during the drying process of yam slices (Dioscorea rotundata) in a hot air convective dryer. Also the effective diffusivity, activation energy, and rehydration ratio were calculated. The experiments were carried out at three (3) drying air temperatures (50, 60, and 70 °C), air velocities (0.5, 1, and 1.5 m/s), and slice thickness (3, 6, and 9 mm), and the obtained experimental data were used to check the usefulness of ANFIS in the yam drying process. The result showed efficient applicability of ANFIS in predicting the MR at any time of the drying process with a correlation value (R2) of 0.98226 and root mean square error value (RMSE) of 0.01702 for the testing stage. The effective diffusivity increased with an increase in air velocity, air temperature, and thickness and the values (6.382E -09 to 1.641E -07 m2/s). The activation energy increased with an increase in air velocity, but fluctuate within the air temperatures and thickness used (10.59-54.93 KJ/mol). Rehydration ratio was highest at air velocity×air temperature×thickness (1.5 m/s×70 °C × 3 mm), and lowest at air velocity × air temperature×thickness (0.5 m/s×70 °C × 3 mm). The result showed that the drying kinetics of Dioscorea rotundata existed in the falling rate period. The drying time decreased with increased temperature, air velocity, and decreased slice thickness. These established results are applicable in process and equipment design, analysis and prediction of hot air convective drying of yam (Dioscorea rotundata) slices.

SELECTION OF CITATIONS
SEARCH DETAIL