Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Xenobiotica ; 46(10): 868-74, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26796435

ABSTRACT

1. The metabolism of dydrogesterone was investigated in human liver cytosol (HLC) and human liver microsomes (HLM). Enzymes involved in dydrogesterone metabolism were identified and their relative contributions were estimated. 2. Dydrogesterone clearance was clearly higher in HLC compared to HLM. The major active metabolite 20α-dihydrodydrogesterone (20α-DHD) was only produced in HLC. 3. The formation of 20α-DHD by cytosolic aldo-keto reductase 1C (AKR1C) was confirmed with isoenzyme-specific AKR inhibitors. 4. Using recombinantly expressed human cytochrome P450 (CYP) isoenzymes, dydrogesterone was shown to be metabolically transformed by CYP3A4 and CYP2C19. 5. A clear contribution of CYP3A4 to microsomal metabolism of dydrogesterone was demonstrated with HLM and isoenzyme-specific CYP inhibitors, and confirmed by a significant correlation between dydrogesterone clearance and CYP3A4 activity. 6. Contribution of CYP2C19 was shown to be clearly less than CYP3A4 and restricted to a small group of human individuals with very high CYP2C19 activity. Therefore, it is expected that CYP2C19 genetic variations will not affect dydrogesterone pharmacokinetics in man. 7. In conclusion, dydrogesterone metabolism in the liver is dominated primarily by cytosolic enzymes (particularly AKR1C) and secondarily by CYP3A4, with the former exclusively responsible for 20α-DHD formation.


Subject(s)
Aldehyde Reductase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Dydrogesterone/metabolism , Progestins/metabolism , Aldo-Keto Reductases , Humans
2.
J Clin Pharmacol ; 54(9): 1038-47, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24691799

ABSTRACT

Simvastatin and fenofibrate are frequently co-prescribed at staggered intervals for the treatment of dyslipidemia. Since a drug-drug interaction has been reported when the two drugs are given simultaneously, it is of clinical interest to know whether the interaction differs between simultaneous and staggered combinations. A study, assessing the impact of both combinations on the interaction, was conducted with 7-day treatment regimens using simvastatin 40 mg and fenofibrate 145 mg: (A) simvastatin only (evening), (B) simvastatin and fenofibrate (both in evening), and (C) simvastatin (evening) and fenofibrate (morning). Eighty-five healthy subjects received the respective treatments in a randomized, 3-way cross-over study. The pharmacokinetics of simvastatin and the active metabolite simvastatin acid were determined. There was a limited reduction in the AUC0-24h of simvastatin acid of 21 and 29% for simultaneous and staggered combination, respectively. The geometric mean AUC0-24h ratio of simvastatin acid for the two combined dosing regimens (B/C) and 90% confidence interval were 111% (102-121). The interaction apparently had no impact on lipid markers. The findings imply that the observed pharmacokinetic interaction is unlikely clinically relevant, and support the combined use of simvastatin and fenofibrate not only given at staggered interval but also given simultaneously.


Subject(s)
Fenofibrate/administration & dosage , Fenofibrate/pharmacokinetics , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/pharmacokinetics , Simvastatin/administration & dosage , Simvastatin/pharmacokinetics , Cholesterol/blood , Cross-Over Studies , Drug Administration Schedule , Drug Interactions , Drug Therapy, Combination , Female , Fenofibrate/blood , Humans , Hypolipidemic Agents/blood , Liver-Specific Organic Anion Transporter 1 , Male , Organic Anion Transporters/genetics , Polymorphism, Single Nucleotide , Simvastatin/blood , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...