Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 39(5): 1052-1059, 2020 05.
Article in English | MEDLINE | ID: mdl-32096287

ABSTRACT

Waterfowl are often exposed to and readily accumulate anthropogenic contaminants when foraging in polluted environments. Settling impoundments containing coal combustion waste (CCW) enriched in trace elements such as arsenic (As), selenium (Se), and mercury (Hg) are often used by free-ranging migratory and resident waterfowl and represent potential sources for contaminant uptake. To assess accumulation of CCW contaminants, we experimentally restricted waterfowl to a CCW-contaminated impoundment and quantified trace element burdens in blood, muscle, and liver tissues over known periods of exposure (between 3 and 92 d). From these data we developed models 1) to predict elemental bioaccumulation with increased exposure time, and 2) to predict muscle/liver burdens based on concentrations in blood as a nondestructive sampling method. Although Hg and As did not bioaccumulate in our waterfowl, we observed an increase in Se concentrations in muscle, liver, and blood tissues over the duration of our experiment. Furthermore, we found that blood may be used as an effective nondestructive sampling alternative to predict muscle and liver tissue concentrations in birds contaminated with Se and As through dietary exposure. These data provide unique insights into accumulation rates of contaminants for waterfowl utilizing habitats contaminated with CCW and demonstrate the efficacy of nonlethal sampling of waterfowl to quantify contaminant exposure. Environ Toxicol Chem 2020;39:1052-1059. © 2020 SETAC.


Subject(s)
Coal , Ducks/metabolism , Environmental Monitoring , Trace Elements/analysis , Waste Products , Animals , Arsenic/blood , Ducks/blood , Geography , Liver/metabolism , Mercury/blood , Muscles/metabolism , Selenium/blood
2.
J Environ Radioact ; 171: 189-199, 2017 May.
Article in English | MEDLINE | ID: mdl-28273599

ABSTRACT

Low-level releases of radiocesium into former nuclear reactor cooling-reservoirs on the U.S. Department of Energy's Savannah River Site (SRS) in South Carolina, USA, dating primarily to the late 1950s and early 1960s, have allowed examination of long-term contaminant attenuation in biota occupying these habitats. Periodic collections of migratory game birds since the 1970s have documented 137Cs (radiocesium) activity concentrations in birds of SRS reservoirs, including mainly Par Pond and Pond B. In this study, during 2014 and 2015 we released wild-caught American coots (Fulica americana) and ring-necked ducks (Aythya collaris) onto Pond B. We made lethal collections of these same birds with residence times ranging from 32 to 173 days to examine radiocesium uptake and estimate the rate of natural attenuation. The two species achieved asymptotic whole-body activity concentrations of radiocesium at different times, with ring-necked ducks requiring almost three times longer than the 30-35 days needed by coots. We estimated ecological half-life (Te) for Pond B coots over a 28-yr period as 16.8 yr (95% CI = 12.9-24.2 yr). Pond B coot Te was nearly four times longer than Te for coots at nearby Par Pond where radiocesium bioavailability had been constrained for decades by pumping of potassium-enriched river water into that reservoir. Te could not be estimated from long-term data for radiocesium in Pond B diving ducks, including ring-necked ducks, likely because of high variability in residence times of ducks on Pond B. Our results highlight the importance: (1) for risk managers to understand site-specific bio-geochemistry of radiocesium for successful implementation of countermeasures at contaminated sites and (2) of residence time as a critical determinant of observed radiocesium activity concentrations in highly mobile wildlife inhabiting contaminated habitats.


Subject(s)
Birds/metabolism , Cesium Radioisotopes/metabolism , Radiation Monitoring , Water Pollutants, Radioactive/metabolism , Animal Migration , Animals , Cesium Radioisotopes/analysis , Half-Life , Nuclear Reactors , Water Pollutants, Radioactive/analysis
3.
Arch Environ Contam Toxicol ; 72(2): 235-246, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27933359

ABSTRACT

Anthropogenic pollutants disrupt global biodiversity, and terrestrial sentinels of pollution can provide a warning system for ecosystem-wide contamination. This study sought to assess whether raccoons (Procyon lotor) are sentinels of local exposure to trace element contaminants at a coal fly ash site and whether exposure resulted in health impairment or changes in the intestinal helminth communities. We compared trace element accumulation and the impact on health responses and intestinal helminth communities of raccoons inhabiting contaminated and reference sites of the U.S. Department of Energy's Savannah River Site (South Carolina, USA). Data on morphometry, hematology, histopathology, helminth community and abundance, and liver trace element burdens were collected from 15 raccoons captured adjacent to a coal fly ash basin and 11 raccoons from a comparable uncontaminated site nearby. Of eight trace elements analyzed, Cu, As, Se, and Pb were elevated in raccoons from the contaminated site. Raccoons from the contaminated site harbored higher helminth abundance than animals from the reference site and that abundance was positively associated with increased Cu concentrations. While we found changes in hematology associated with increased Se exposure, we did not find physiological or histological changes associated with higher levels of contaminants. Our results suggest that raccoons and their intestinal helminths act as sentinels of trace elements in the environment associated with coal fly ash contamination.


Subject(s)
Coal Ash/analysis , Environmental Exposure , Environmental Pollutants/metabolism , Raccoons/metabolism , Sentinel Surveillance/veterinary , Trace Elements/metabolism , Animals , Environmental Monitoring , Female , Liver/chemistry , Male , South Carolina
4.
PLoS One ; 8(6): e66359, 2013.
Article in English | MEDLINE | ID: mdl-23840450

ABSTRACT

The social intelligence hypothesis suggests that living in large social networks was the primary selective pressure for the evolution of complex cognition in primates. This hypothesis is supported by comparative studies demonstrating a positive relationship between social group size and relative brain size across primates. However, the relationship between brain size and cognition remains equivocal. Moreover, there have been no experimental studies directly testing the association between group size and cognition across primates. We tested the social intelligence hypothesis by comparing 6 primate species (total N = 96) characterized by different group sizes on two cognitive tasks. Here, we show that a species' typical social group size predicts performance on cognitive measures of social cognition, but not a nonsocial measure of inhibitory control. We also show that a species' mean brain size (in absolute or relative terms) does not predict performance on either task in these species. These data provide evidence for a relationship between group size and social cognition in primates, and reveal the potential for cognitive evolution without concomitant changes in brain size. Furthermore our results underscore the need for more empirical studies of animal cognition, which have the power to reveal species differences in cognition not detectable by proxy variables, such as brain size.


Subject(s)
Behavior, Animal , Cognition , Lemur/physiology , Social Behavior , Animals , Competitive Behavior , Female , Interpersonal Relations , Lemur/classification , Lemur/psychology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...