Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(3): e0300378, 2024.
Article in English | MEDLINE | ID: mdl-38551923

ABSTRACT

Understanding the topographic basis for microclimatic variation remains fundamental to predicting the site level effects of warming air temperatures. Quantifying diurnal fluctuation and seasonal extremes in relation to topography offers insight into the potential relationship between site level conditions and changes in regional climate. The present study investigated an annual understory temperature regime for 50 sites distributed across a topographically diverse area (>12 km2) comprised of mixed evergreen-deciduous woodland vegetation typical of California coastal ranges. We investigated the effect of topography and tree cover on site-to-site variation in near-surface temperatures using a combination of multiple linear regression and multivariate techniques. Sites in topographically depressed areas (e.g., valley bottoms) exhibited larger seasonal and diurnal variation. Elevation (at 10 m resolution) was found to be the primary driver of daily and seasonal variations, in addition to hillslope position, canopy cover and northness. The elevation effect on seasonal mean temperatures was inverted, reflecting large-scale cold-air pooling in the study region, with elevated minimum and mean temperature at higher elevations. Additionally, several of our sites showed considerable buffering (dampened diurnal and seasonal temperature fluctuations) compared to average regional conditions measured at an on-site weather station. Results from this study help inform efforts to extrapolate temperature records across large landscapes and have the potential to improve our ecological understanding of fine-scale seasonal climate variation in coastal range environments.


Subject(s)
Climate , Microclimate , Seasons , Temperature , Forests , Ecosystem
2.
Ecol Evol ; 13(7): e10097, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449020

ABSTRACT

Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within- and among-species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippiana and P. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates than P. hippiana. In contrast, hybrid performance relative to P. pulcherrima varied with population and climate, with the hybrid maintaining relatively stable growth rates while populations of P. pulcherrima shrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context-dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions for P. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long-lived taxa are lagging behind their demographic trajectories, such that the currently less common P. hippiana could become the most abundant of the Potentilla taxa as this region continues to warm and dry.

3.
Am J Bot ; 108(9): 1584-1594, 2021 09.
Article in English | MEDLINE | ID: mdl-34587290

ABSTRACT

Dispersal-the movement of an individual from the site of birth to a different site for reproduction-is an ecological and evolutionary driver of species ranges that shapes patterns of colonization, connectivity, gene flow, and adaptation. In plants, the traits that influence dispersal often vary within and among species, are heritable, and evolve in response to the fitness consequences of moving through heterogeneous landscapes. Spatial and temporal variation in the quality and quantity of habitat are important sources of selection on dispersal strategies across species ranges. While recent reviews have evaluated the interactions between spatial variation in habitat and dispersal dynamics, the extent to which geographic variation in temporal variability can also shape range-wide patterns in dispersal traits has not been synthesized. In this paper, we summarize key predictions from metapopulation models that evaluate how dispersal evolves in response to spatial and temporal habitat variability. Next, we compile empirical data that quantify temporal variability in plant demography and patterns of dispersal trait variation across species ranges to evaluate the hypothesis that higher temporal variability favors increased dispersal at plant range limits. We found some suggestive evidence supporting this hypothesis while more generally identifying a major gap in empirical work evaluating plant metapopulation dynamics across species ranges and geographic variation in dispersal traits. To address this gap, we propose several future research directions that would advance our understanding of the interplay between spatiotemporal variability and dispersal trait variation in shaping the dynamics of current and future species ranges.


Subject(s)
Ecosystem , Plants , Plants/genetics , Population Dynamics
4.
Ecol Lett ; 24(4): 772-780, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33559296

ABSTRACT

The expectations of polar or upslope distributional shifts of species ranges in response to warming climate conditions have been recently questioned. Diverse responses of different life stages to changing temperature and moisture regimes may alter these predicted range dynamics. Furthermore, the climate driver(s) influencing demographic rates, and the contribution of each demographic rate to population growth rate (λ), may shift across a species range. We investigated these demographic effects by experimentally manipulating climate and measuring responses of λ in nine populations spanning the elevation range of an alpine plant (Ivesia lycopodioides). Populations exhibited stable growth rates (λ ~ 1) under naturally wet conditions and declining rates (λ < 1) under naturally dry conditions. However, opposing vital rate responses to experimental heating and watering lead to negligible or negative effects on population stability. These findings indicate that life stage-specific responses to changing climate can disrupt the current relationships between population stability and climate across species ranges.


Subject(s)
Climate Change , Climate , Population Dynamics , Population Growth
5.
Glob Chang Biol ; 26(3): 1055-1067, 2020 03.
Article in English | MEDLINE | ID: mdl-31674701

ABSTRACT

The impacts of climate change have re-energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range-limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors-climate heterogeneity, collinearity among climate variables, and spatial scale-interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.


Subject(s)
Climate Change , Ecology , Biodiversity , Ecosystem , Geography
6.
Am J Bot ; 107(2): 239-249, 2020 02.
Article in English | MEDLINE | ID: mdl-31721149

ABSTRACT

PREMISE: Examining community turnover across climate gradients at multiple scales is vital to understanding biogeographic response to climate change. This approach is especially important for alpine plants in which the relative roles of topographic complexity and nonclimatic or stochastic factors vary across spatial scales. METHODS: We examined the structure of alpine plant communities across elevation gradients in the White Mountains, California. Using community climatic niche means (CCNMs) and measures of community dissimilarity, we explored the relation between community composition and elevation gradients at three scales: the mountain range, individual peaks, and within elevation contours. RESULTS: At the mountain range scale, community turnover and CCNMs showed strongly significant relations with elevation, with an increase in the abundance of cooler and wetter-adapted species at higher elevations. At the scale of single peaks, we found weak and inconsistent relations between CCNMs and elevation, but variation in community composition explained by elevation increased. Within the elevation contours, the range of CCNMs was weakly positively correlated with turnover in species identity, likely driven by microclimate and other site-specific factors. CONCLUSIONS: Our results suggest that there is strong environmental sorting of alpine plant communities at broad scales, but microclimatic and site-specific, nonclimatic factors together shape community turnover at finer scales. In the context of climate change, our results imply that community-climate relations are scale-dependent, and predictions of local alpine plant range shifts are limited by a lack of topoclimatic and habitat information.


Subject(s)
Climate Change , Ecosystem , Biodiversity , California , Microclimate , Plants
7.
New Phytol ; 222(1): 193-205, 2019 04.
Article in English | MEDLINE | ID: mdl-30372539

ABSTRACT

Heterogeneous terrain in montane systems results in a decoupling of climatic gradients. Population dynamics across species' ranges in these heterogeneous landscapes are shaped by relationships between demographic rates and these interwoven climate gradients. Linking demography and climate variables across species' ranges refines our understanding of the underlying mechanisms of species' current and future ranges. We explored the importance of multiple microclimatic gradients in shaping individual demographic rates and population growth rates in 16 populations across the elevational distribution of an alpine plant (Ivesia lycopodioides var. scandularis). Using integral projection modeling, we ask how each rate varies across three microclimate gradients: accumulated degree-days, growing-season soil moisture, and days of snow cover. Range-wide variation in demographic rates was best explained by the combined influence of multiple microclimatic variables. Different pairs of demographic rates exhibited both similar and inverse responses to the same microclimatic gradient, and the microclimatic effects often varied with plant size. These responses resulted in range-wide projected population persistence, with no declining populations at either elevational range edge or at the extremes of the microclimate gradients. The complex relationships between topography, microclimate and demography suggest that populations across a species' range may have unique demographic pathways to stable population dynamics.


Subject(s)
Ecosystem , Microclimate , Rosaceae/growth & development , California , Geography , Humidity , Plant Leaves/physiology , Population Dynamics , Regression Analysis , Reproduction , Seasons , Seedlings/physiology , Soil/chemistry
8.
Ecol Evol ; 8(16): 8043-8054, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30250683

ABSTRACT

Predicting whether individuals will colonize a novel habitat is of fundamental ecological interest and is crucial to conservation efforts. A consistently supported predictor of colonization success is the number of individuals introduced, also called propagule pressure. Propagule pressure increases with the number of introductions and the number of individuals per introduction (the size of the introduction), but it is unresolved which process is a stronger driver of colonization success. Furthermore, their relative importance may depend upon the environment, with multiple introductions potentially enhancing colonization of fluctuating environments. To evaluate the relative importance of the number and size of introductions and its dependence upon environmental variability, we paired demographic simulations with a microcosm experiment. Using Tribolium flour beetles as a model system, we introduced a fixed number of individuals into replicated novel habitats of stable or fluctuating quality, varying the number of introductions through time and size of each introduction. We evaluated establishment probability and the size of extant populations through seven generations. We found that establishment probability generally increased with more, smaller introductions, but was not affected by biologically realistic fluctuations in environmental quality. Population size was not significantly affected by environmental variability in the simulations, but populations in the microcosms grew larger in a stable environment, especially with more introduction events. In general, the microcosm experiment yielded higher establishment probability and larger populations than the demographic simulations. We suggest that genetic mechanisms likely underlie these differences and thus deserve more attention in efforts to parse propagule pressure. Our results highlight the importance of preventing further introductions of undesirable species to invaded sites and suggest conservation efforts should focus on increasing the number of introductions or reintroductions of desirable species rather than increasing the size of those introduction events into harsh environments.

9.
AoB Plants ; 82016.
Article in English | MEDLINE | ID: mdl-27339048

ABSTRACT

Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales.

10.
Glob Chang Biol ; 20(9): 2841-55, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24934878

ABSTRACT

Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study.


Subject(s)
Altitude , Animal Distribution , Birds/physiology , Butterflies/physiology , Climate Change/statistics & numerical data , Mammals/physiology , Plant Physiological Phenomena , Acclimatization/physiology , Animals , California , Conservation of Natural Resources/methods , Demography , Forecasting/methods , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...