Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; : e3495, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056486

ABSTRACT

Bacteriocins are ribosomally synthesized peptides with the innate ability to kill or inhibit growth of other bacteria. In recent years, bacteriocins have received increased interest, as their antimicrobial activity enhances food safety and shelf life by combatting pathogens such as Listeria monocytogenes. They also have application potential as an active pharmaceutical compound to combat multidrug-resistant pathogens. As new bacteriocins continue to be discovered, accelerated workflows for screening, identification, and process development have been developed. However, antimicrobial activity measurement is often still limited with regards to quantification and throughput. Here, we present the use of a non-linear calibration model to infer nisin concentrations in cultivation supernatants of Lactococcus lactis ssp. lactis B1629 using readouts of pHluorin2 fluorescence-based antimicrobial activity assays.

2.
Microb Cell Fact ; 23(1): 112, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622596

ABSTRACT

BACKGROUND: Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS: This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l - 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h) - 1 , the lowest rate of 0.3 g (l h) - 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in ß -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION: We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.


Subject(s)
Cellulase , Hypocreales , Trichoderma , Cellulase/metabolism , Lactose/metabolism , Reproducibility of Results , Biotechnology , Trichoderma/metabolism
3.
Microb Cell Fact ; 23(1): 74, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433206

ABSTRACT

BACKGROUND: Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS: In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS: Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.


Subject(s)
Bacteriocins , Lactobacillales , Lactococcus lactis , Latilactobacillus sakei , Workflow , Adsorption
4.
Microb Cell Fact ; 23(1): 67, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402403

ABSTRACT

BACKGROUND: In recent years, the production of inclusion bodies that retain substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) are formed by genetic fusion of an aggregation-inducing tag to a gene of interest via short linker polypeptides. The resulting CatIBs are known for their easy and cost-efficient production, recyclability as well as their improved stability. Recent studies have outlined the cooperative effects of linker and aggregation-inducing tag on CatIB activities. However, no a priori prediction is possible so far to indicate the best combination thereof. Consequently, extensive screening is required to find the best performing CatIB variant. RESULTS: In this work, a semi-automated cloning workflow was implemented and used for fast generation of 63 CatIB variants with glucose dehydrogenase of Bacillus subtilis (BsGDH). Furthermore, the variant BsGDH-PT-CBDCell was used to develop, optimize and validate an automated CatIB screening workflow, enhancing the analysis of many CatIB candidates in parallel. Compared to previous studies with CatIBs, important optimization steps include the exclusion of plate position effects in the BioLector by changing the cultivation temperature. For the overall workflow including strain construction, the manual workload could be reduced from 59 to 7 h for 48 variants (88%). After demonstration of high reproducibility with 1.9% relative standard deviation across 42 biological replicates, the workflow was performed in combination with a Bayesian process model and Thompson sampling. While the process model is crucial to derive key performance indicators of CatIBs, Thompson sampling serves as a strategy to balance exploitation and exploration in screening procedures. Our methodology allowed analysis of 63 BsGDH-CatIB variants within only three batch experiments. Because of the high likelihood of TDoT-PT-BsGDH being the best CatIB performer, it was selected in 50 biological replicates during the three screening rounds, much more than other, low-performing variants. CONCLUSIONS: At the current state of knowledge, every new enzyme requires screening for different linker/aggregation-inducing tag combinations. For this purpose, the presented CatIB toolbox facilitates fast and simplified construction and screening procedures. The methodology thus assists in finding the best CatIB producer from large libraries in short time, rendering possible automated Design-Build-Test-Learn cycles to generate structure/function learnings.


Subject(s)
Automation, Laboratory , High-Throughput Screening Assays , Reproducibility of Results , Bayes Theorem , Inclusion Bodies , Automation
5.
Front Microbiol ; 14: 1254882, 2023.
Article in English | MEDLINE | ID: mdl-38260893

ABSTRACT

Bacteriocins are antimicrobial peptides applied in food preservation and are interesting candidates as alternatives to conventional antibiotics or as microbiome modulators. Recently, we established Corynebacterium glutamicum as a suitable production host for various bacteriocins including garvicin Q (GarQ). Here, we establish secretion of GarQ by C. glutamicum via the Sec translocon achieving GarQ titers of about 7 mg L-1 in initial fermentations. At neutral pH, the cationic peptide is efficiently adsorbed to the negatively charged envelope of producer bacteria limiting availability of the bacteriocin in culture supernatants. A combination of CaCl2 and Tween 80 efficiently reduces GarQ adsorption to C. glutamicum. Moreover, cultivation in minimal medium supplemented with CaCl2 and Tween 80 improves GarQ production by C. glutamicum to about 15 mg L-1 but Tween 80 resulted in reduced GarQ activity at later timepoints. Using a reporter strain and proteomic analyses, we identified HtrA, a protease associated with secretion stress, as another potential factor limiting GarQ production. Transferring production to HtrA-deficient C. glutamicum K9 improves GarQ titers to close to 40 mg L-1. Applying conditions of low aeration prevented loss in activity at later timepoints and improved GarQ titers to about 100 mg L-1. This is about 50-fold higher than previously shown with a C. glutamicum strain employing the native GarQ transporter GarCD for secretion and in the range of levels observed with the native producer Lactococcus petauri B1726. Additionally, we tested several synthetic variants of GarQ and were able to show that exchange of the methionine in position 5 to a phenylalanine (GarQM5F) results in markedly increased activity against Lactococcus lactis and Listeria monocytogenes. In summary, our findings shed light on several aspects of recombinant GarQ production that may also be of relevance for production with natural producers and other bacteriocins.

SELECTION OF CITATIONS
SEARCH DETAIL